Skip to main content
Log in

Genetic diversity between two Egyptian clover varieties and QTL analysis for some agro-morphological traits

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Genetic diversity between two ecotypes of Egyptian clover varieties, namely Fahl (mono-cut) and Helaly (multi-cut) have been assessed based on forage yield and yield components as well as molecular marker systems. The two parental genotypes were crossed to produce seeds of F1 and F2 progenies. Analyses of variance indicated significant differences between four populations (P1 (Fahl), P2 (Helaly), F1 and F2) for fresh forage yield, number of florets/inflorescence, number of seeds/inflorescence and 1000 seed weight. The mean of F1 hybrid indicated over-dominance of the higher performance. The phenotypic and genotypic coefficients of variation were high for fresh forage yield, intermediate for 1000-seed weight and low for number of florets/inflorescence and number of seeds/inflorescence. Four molecular marker systems with 80 primers, 30 RAPD, 10 ISSR, 10 SRAP and 30 SSR were used for studying the genetic diversity between the two parents, out of which 64 primers (26 RAPD, 7 ISSR, 7 SRAP and 24 SSR) were polymorphic between the parents. The four molecular marker systems generated unique DNA bands for each parent. Twenty-one primers which produced higher unique bands in both parents were surveyed on bulked DNA from the extremes of four agro-morphological traits within and between the two ecotypes in F2 generations. Twenty-one primers produced bands distinguish between the bulked extremes for at least one trait within each ecotype or between the two ecotypes. All polymorphic primers were subjected to QTL analysis, out of them 23 only were mapped on three linkage groups with four agro-morphological traits and showed 24 putative QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakheit BR, Hashad MM, Ahmed TA (2008) Assessment of genetic relationship between a new multifoliate strain and seven Egyptian commercial cultivars of berseem clover as revealed by protein and RAPD markers. Forage Res 34(1):1–8

    Google Scholar 

  2. Abd El-Monem AMA (2016) Improvement of the mono-cut Egyptian clover (Trifolium alexandrium L.) by recurrent selection and synthetic varieties. Ph.D. thesis, Faculty of Agriculture, Assiut University

  3. Mahdy EE, Bakheit BR (1985) The inheritance of forage yield in Egyptian clover (Trifolium alexandrinum L.). Alex. Sci. Exchange 6(2):114–140

    Google Scholar 

  4. Taški-Ajduković K, Nagl N, Milić D, Katić S, Zorić M (2014) Genetic variation and relationship of alfalfa populations and their progenies based on RAPD markers. Cent Eur J Biol 9(8):768–776

    Google Scholar 

  5. Touil L, Aike B, Suomin W, Ali F (2016) Genetic Diversity of Tunisian and Chinese Alfalfa (Medicago sativa L.) revealed by RAPD and ISSR markers. Am J Plant Sci 7:967–979

    Article  CAS  Google Scholar 

  6. Zayed E, Sayed M, Omar A (2015) Genetic variations between two ecotypes of Egyptian clover by inter-simple sequence repeat (ISSR) techniques. Afr J Biotechnol 14(23):1947–1953

    Article  CAS  Google Scholar 

  7. Jin-xing M, Tie-mei W, Xin-shi L (2013) Genetic diversity of wild Medicago sativa by sequence-related amplified polymorphism markers in Xingjiang region China. Pak J Bot 45(6):2043–2050

    Google Scholar 

  8. Rhouma HB, Ksenija TA, Nadia Z, Dorra S, Dragan M, Neila TF (2017) Assessment of the genetic variation in alfalfa genotypes using SRAP markers for breeding purposes. Chil J Agric Res 77(4):332–339

    Article  Google Scholar 

  9. Verma P, Chandra A, Roy AK, Malaviya DR, Kaushal P, Pandey D, Bhatia S (2015) Development, characterization and cross-species transferability of genomic SSR markers in berseem (Trifolium alexandrinum L.), an important multi-cut annual forage legume. Mol Breed 35(23):1–14

    CAS  Google Scholar 

  10. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88(21):9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quarrie SA, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  12. Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R et al (2011) Grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci USA 108:E506–E512. https://doi.org/10.1073/pnas.1102819108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mohan M, Nair S, Bhagwat G, Krishna T, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103. https://doi.org/10.1023/A:1009651919792

    Article  CAS  Google Scholar 

  14. Newbury HJ (2003) Plant molecular breeding. Blackwell, Oxford

    Google Scholar 

  15. Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109(3):596–608

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Sledge M, Bouton J (2007) Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet 114(8):1367–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Drayton MC, George J, Cogan NOI, Baillie RC, Hand ML, Kearney G, Trigg P, Erb S, Wilkinson T, Bannan N, Forster JW, Smith KF (2010) QTL analysis of salt stress tolerance in white clover (Trifolium repens L.). Theor Appl Genet 120:607–619

    Article  CAS  PubMed  Google Scholar 

  18. Isobe S, Klimenko I, Ivashuta S, Gau M, Kozlov NN (2003) First RFLP linkage map of red clover (Trifolium pretense L.) based on cDNA probes and its transferability to other red clover germplasm. Theor Appl Genet 108:105–112

    Article  CAS  PubMed  Google Scholar 

  19. Sato S, Isobe S, Asamizu E, Ohmido N, Kataoka R, Nakamura Y, Kaneko T, Sakurai N, Okumura K, Klimenko I, Sasamoto S, Wada T, Watanabe A, Kohara M, Fujishiro T, Tabata S (2005) Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res 12:301–364

    Article  CAS  PubMed  Google Scholar 

  20. Isobe S, Kolliker R, Hisano H, Sasamoto S, Wada T, Klimenko I, Okumura K, Tabata S (2009) Construction of a consensus linkage map for red clover (Trifolium pratense L.). BMC Plant Biol 9(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steel RG, Torrie JM (1997) Principles and procedures of Statistics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  22. Miller PA, Williams JC, Robinson HF, Comstock RE (1958) Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agron J 50:126–131. https://doi.org/10.2134/agronj1958.00021962005000030004x

    Article  Google Scholar 

  23. Al-Jibouri HA, Miller PA, Robinson HF (1958) Genotype and environmental variances and co-variance in upland cotton cross of interspecific origin. Agron J 50:633–637. https://doi.org/10.2134/agronj1958.00021962005000100020x

    Article  Google Scholar 

  24. Burton GW (1952) Quantitative inheritance in grasses. In: Proceedings of the sixth international grassland congress, Pennsylvania State College, USA, 17, 23 August 1952, pp. 277–283

  25. Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  27. Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmakere/EXP 3.0. Whitehead Institute Technical Report, 3rd edn

  28. Wang S, Basten CJ, Zeng ZB (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  29. Abd El-Naby ZM, Wafaa WMS, El-Nahrawy MA (2014) Genetic analysis and maternal effects in berseem clover. Life Sci J 11(5):407–418

    Google Scholar 

  30. Bakheit BR (1989) Effect of recurrent selection and performance of seed synthetics in berseem clover, Trifolium alexandrinum L. Forage Res 15:1–7

    Google Scholar 

  31. Zayed EM (2013) Applications of biotechnology on Egyptian clover [(Berseem) (Trifolium alexandrinum L.)]. Int J Agric Sci Res 3:99–120

    Google Scholar 

  32. Abd El-Naby ZM, Zayed EM, Abo-Feteih SSM (2012) Biochemical and molecular differences between Egyptian clover hybrids. Egypt J Biotechnol 41:104–118

    Google Scholar 

  33. Zayed EM, Soliman MI, Ramadan GA, Tarrad MM (2010) Molecular characterization of two cultivars of Egyptian clover (Trifolium alexandrinum L.). Range Manage Agrofor 31(2):140–143

    Google Scholar 

  34. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  CAS  PubMed  Google Scholar 

  35. Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS, Srivantaneeyakul S, Singh VP, Bagali PG, Prasanna HC, McLaren G, Khush GS (2003) Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107:679–690

    Article  PubMed  Google Scholar 

  36. Doris H, Beat B, Bruno S, Franco W, Roland K (2006) QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet 112:536–545. https://doi.org/10.1007/s00122-005-0158-1

    Article  CAS  Google Scholar 

  37. Armstead IP, Turner LB, King IP, Cairns AJ, Humphreys MO (2002) Comparison and integration of genetic maps generated from F2 and BC1-type mapping populations in perennial ryegrass. Plant Breed 121:501–507

    Article  CAS  Google Scholar 

  38. Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  39. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196

    Article  CAS  Google Scholar 

  40. Joseph GR, Gary RB, Charles BE (2007) Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Sci 47:11–18. https://doi.org/10.2135/cropsci2006.07.0447

    Article  CAS  Google Scholar 

  41. Luz del Carmen LE, Thierry H, Bernadette J (2012) Multi-population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula. Theor Appl Genet 124:739–754. https://doi.org/10.1007/s00122-011-1743-0

    Article  Google Scholar 

  42. Barrett B, Baird IJ, Woodfield DR (2005) A QTL analysis of white clover seed production. Crop Sci 45:1844–1850

    Article  CAS  Google Scholar 

  43. Cogan NOI, Abberton MT, Smith KF, Kearney G, Marshall AH, Williams A, Michaelson-Yeates TPT, Bowen C, Jones ES, Vecchies AC, Forster JW (2006) Individual and multi-environment combined analyses identify QTLs for morphogenetic and reproductive development traits in white clover (Trifolium repens L.). Theor Appl Genet 112:1401–1415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the support provided by the Faculty of Agriculture, Assiut University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahaa E. S. Abdel-Fatah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Fatah, B.E.S., Bakheit, B.R. Genetic diversity between two Egyptian clover varieties and QTL analysis for some agro-morphological traits. Mol Biol Rep 46, 897–908 (2019). https://doi.org/10.1007/s11033-018-4546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4546-4

Keywords

Navigation