Skip to main content

Advertisement

Log in

Genomic alterations associated with HER2+ breast cancer risk and clinical outcome in response to trastuzumab

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human epidermal growth factor receptor 2 positive (HER2+) breast cancer (BC) is an aggressive BC subtype characterized by HER2 overexpression/amplification. Genomic alterations of HER2 and others have been reported to be associated with, HER2 overexpression and prediction of trastuzumab-response. Here, we aimed at identifying germline and somatic alterations associated with HER2+ BC and evaluating their association with clinical outcome in response to trastuzumab therapy given to HER2+ BC patients. Global Sequencing Array (GSA) and polymerase chain reaction-restriction length polymorphism (PCR-RFLP) techniques were used to determine alterations in HER2 and other HER2-interacting as well as signaling-related genes in HER2+ BC. In addition, 20 formalin fixed paraffin-embedded tissue samples were also evaluated by GSA for identifying significant variations associated with HER + BC as well as response to trastuzumab therapy. A germline variant in HER2 (I655V) was found to be significantly associated with the risk of the disease (p < 0.01). A nonsense mutation in PTPN11 (K99X), a pathogenic CCND1 splice site variant (P241P), a hotspot missense mutation in PIK3CA (E542K) and a hotspot missense mutation in TP53 (R249S); were observed in 25%, 75%, 30% and 40% of the HER2+ BC tissue samples, respectively. Mutant CCND1 (P241P) and PIK3CA (E542K) were found to be significantly associated with reduced disease-free survival (DFS) in patients treated with trastuzumab (p: 0.018 and 0.005, respectively). These results indicate that HER2, PTPN11, CCND1 and PIK3CA genes are important biomarkers in HER2+ BC. Moreover, the patients harboring mutant CCND1 and PIK3CA exhibit a poorer clinical outcome as compared to those carrying wild-type CCND1 and PIK3CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson KN, Schwab RB, Martinez ME (2014) Reproductive risk factors and breast cancer subtypes: a review of the literature. Breast Cancer Res Treat 144:1–10. https://doi.org/10.1007/s10549-014-2852-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iqbal N, Iqbal N, Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications, Mol Biol Int 2014 (2014) https://doi.org/10.1155/2014/852748

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morrow PKH, Zambrana F, Esteva FJ (2009) Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer. Breast Cancer Res 11:207. https://doi.org/10.1186/bcr2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singla H, Kalra S, Kheterpal P, Kumar V, Munshi A (2017) Role of genomic alterations in her2 positive breast carcinoma: focus on susceptibility and trastuzumab-therapy. Curr Cancer Drug Targets 17:344–356

    Article  CAS  PubMed  Google Scholar 

  5. Singla H, Munshi A, Banipal R, Kumar V (2018) Recent updates on the therapeutic potential of HER2 tyrosine kinase inhibitors for the treatment of breast cancer. Curr Cancer Drug Targets 18:306–327

    Article  CAS  PubMed  Google Scholar 

  6. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013

    Article  PubMed  Google Scholar 

  7. Pinto D, Vasconcelos A, Costa S, Pereira D, Rodrigues H, Lopes C, Medeiros R (2004) HER2 polymorphism and breast cancer risk in Portugal. Eur J Cancer Prev 13: 177–181

    Article  CAS  PubMed  Google Scholar 

  8. Bedi J, Gill J, Aulakh R, Kaur P, Sharma A, Pooni P (2013) Pesticide residues in human breast milk: risk assessment for infants from Punjab, India, Sci. Total Environ 463:720–726

    Article  CAS  Google Scholar 

  9. Xie D, Shu X-O, Deng Z, Wen W-Q, Creek KE, Dai Q, Gao Y-T, Jin F, Zheng W (2000) Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst 92:412–417

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari A, Vincent-Salomon A, Pivot X, Sertier A-S, Thomas E, Tonon L, Boyault S, Mulugeta E, Treilleux I, MacGrogan G (2016) A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat Commun 7:12222. https://doi.org/10.1038/ncomms12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Furrer D, Lemieux J, Côté M-A, Provencher L, Laflamme C, Barabé F, Jacob S, Michaud A, Diorio C (2016) Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors. Breast 30:191–196

    Article  PubMed  Google Scholar 

  12. Fleishman SJ, Schlessinger J, Ben-Tal N (2002) A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci 99: 15937–15940

    Article  CAS  PubMed  Google Scholar 

  13. Beauclair S, Formento P, Fischel J, Lescaut W, Largillier R, Chamorey E, Hofman P, Ferrero J-M, Pages G, Milano G (2007) Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol 18:1335–1341

    Article  CAS  PubMed  Google Scholar 

  14. AbdRaboh NR, Shehata HH, Ahmed MB, Bayoumi FA (2013) HER1 R497K and HER2 I655V polymorphisms are linked to development of breast cancer. Dis Markers 34:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hou J, Jiang Y, Tang W, Jia S (2013) p53 codon 72 polymorphism and breast cancer risk: a meta-analysis. Exp Ther Med 5:1397–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sezgin E, Sahin FI, Yagmurdur MC, Demirhan B (2011) HER-2/neu gene codon 655 (Ile/Val) polymorphism in breast carcinoma patients. Genet Test Mol Biomarkers 15:143–146

    Article  CAS  PubMed  Google Scholar 

  17. Nassef AA, Ibrahim NY (2014) Allellic HER-2 codon 655 polymorphism and the influence of plasma HER-2 levels in breast cancer Egyptian female patients. Comp Clin Path 23:613–617. https://doi.org/10.1007/s00580-012-1658-4

    Article  CAS  Google Scholar 

  18. Han X, Diao L, Xu Y, Xue W, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B (2014) Association between the HER2 Ile655Val polymorphism and response to trastuzumab in women with operable primary breast cancer. Ann Oncol 25:1158–1164

    Article  CAS  PubMed  Google Scholar 

  19. Kaur G, Dogra N, Singh S (2018) Health risk assessment of occupationally pesticide exposed population of cancer prone area of Punjab. Toxicol Sci 165:157–169

    Article  CAS  PubMed  Google Scholar 

  20. Rudolph A, Chang-Claude J, Schmidt MK (2016) Gene–environment interaction and risk of breast cancer. Br J Cancer 114:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brennan P (2002) Gene–environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis 23:381–387

    Article  CAS  PubMed  Google Scholar 

  22. Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R (2013) Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta 1836:211–226

    CAS  PubMed  Google Scholar 

  23. Dittrich A, Gautrey H, Browell D, Tyson-Capper A (2014) The HER2 signaling network in breast cancer—like a spider in its web. J Mammary Gland Biol Neoplasia 19:253–270

    Article  CAS  PubMed  Google Scholar 

  24. Lu C, Dong J, Ma H, Jin G, Hu Z, Peng Y, Guo X, Wang X, Shen H (2009) CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 116:571–575

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Liu H, Lu S, Gao M, Du Q, Tang S-C (2011) Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis involving 23,998 subjects. Oncol Res 19:519–525

    Article  CAS  PubMed  Google Scholar 

  26. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder W, Heighway J (1995) Alternate splicing produces a novel cyclin D1 transcript. Oncogene 11:1005–1011

    CAS  PubMed  Google Scholar 

  27. Pirkmaier A, Yuen K, Hendley J, O’Connell MJ, Germain D (2003) Cyclin d1 overexpression sensitizes breast cancer cells to fenretinide. Clin Cancer Res 9:1877–1884

    CAS  PubMed  Google Scholar 

  28. Mukohara T (2015) PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer (Dove Med Press) 7:111–123

    CAS  Google Scholar 

  29. Kalsi N, Gopalakrishnan C, Rajendran V, Purohit R (2016) Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). J Biomol Struct Dyn 34:2711–2721

    CAS  PubMed  Google Scholar 

  30. Darb-Esfahani S, Denkert C, Stenzinger A, Salat C, Sinn B, Schem C, Endris V, Klare P, Schmitt W, Blohmer J-U (2016) Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy. Oncotarget 7:67686–67698

    PubMed  PubMed Central  Google Scholar 

  31. Liao P, Zeng SX, Zhou X, Chen T, Zhou F, Cao B, Jung JH, Del Sal G, Luo S, Lu H (2017) Mutant p53 Gains Its function via c-Myc activation upon CDK4 phosphorylation at serine 249 and consequent PIN1 binding. Mol Cell 68:1134–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tanioka M, Sakai K, Sudo T, Sakuma T, Kajimoto K, Hirokaga K, Takao S, Negoro S, Minami H, Nakagawa K (2014) Transcriptional CCND1 expression as a predictor of poor response to neoadjuvant chemotherapy with trastuzumab in HER2-positive/ER-positive breast cancer. Breast Cancer Res Treat 147:513–525

    Article  CAS  PubMed  Google Scholar 

  33. Chandarlapaty S, Sakr RA, Giri D, Patil S, Heguy A, Morrow M, Modi S, Norton L, Rosen N, Hudis C (2012) Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res 18:6784–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sánchez V, Sutton CR, Cheng H, Perou CM, Zhao JJ (2013) Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci 110: 14372–14377

    Article  PubMed  Google Scholar 

  35. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402

    Article  CAS  PubMed  Google Scholar 

  36. Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H (2009) Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 21:255–262

    Article  PubMed  Google Scholar 

  37. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D (2010) PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 177:1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loibl S, Von Minckwitz G, Schneeweiss A, Paepke S, Lehmann A, Rezai M, Zahm DM, Sinn P, Khandan F, Eidtmann H (2014) PIK3CA mutations are associated with lower rates of pathologic complete response to anti–human epidermal growth factor receptor 2 (HER2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol 32:3212–3220

    Article  CAS  PubMed  Google Scholar 

  39. Cizkova M, Dujaric M, Lehmann-Che J, Scott V, Tembo O, Asselain B, Pierga J, Marty M, De Cremoux P, Spyratos F (2013) Outcome impact of PIK3CA mutations in HER2-positive breast cancer patients treated with trastuzumab. Br J Cancer 108:1807–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McIntyre JB, Wu JS, Craighead PS, Phan T, Köbel M, Lees-Miller SP, Ghatage P, Magliocco AM, Doll CM (2013) PIK3CA mutational status and overall survival in patients with cervical cancer treated with radical chemoradiotherapy. Gynecol Oncol 128:409–414

    Article  CAS  PubMed  Google Scholar 

  41. Oda K, Stokoe D, Taketani Y, McCormick F (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65:10669–10673

    Article  CAS  PubMed  Google Scholar 

  42. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3:772–775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the Central University of Punjab for providing necessary facilities and infrastructure.

Funding

This study was funded by Central University of Punjab, Bathinda.

Author information

Authors and Affiliations

Authors

Contributions

HS and RPK are researchers working in the field of BC and have conducted all the study. GS has undertaken the analysis of GSA results and carried out the statistical analysis. AM along with VK, RV and RPSB designed the work and helped in the interpretation of results. All the authors contributed to manuscript writing and approved it.

Corresponding authors

Correspondence to Vinod Kumar or Anjana Munshi.

Ethics declarations

Conflict of interest

Authors declare that they do not hold any conflict of interest.

Ethical approval

The authors declare that the Institutional Ethics Committee of the Central University of Punjab, Bathinda approved this study which was conducted in agreement with the recommendations of the Helsinki Declaration.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 471 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, H., Kaur, R.P., Shafi, G. et al. Genomic alterations associated with HER2+ breast cancer risk and clinical outcome in response to trastuzumab. Mol Biol Rep 46, 823–831 (2019). https://doi.org/10.1007/s11033-018-4537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4537-5

Keywords

Navigation