Skip to main content
Log in

Modulatory effects of bufalin, an active ingredient from toad venom on voltage-gated sodium channels

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chan-su (toad venom) has been used as an analgesic agent in China from ancient to modern times. Bufalin, a non-peptide toxin extracted from toad venom, is considered as one of the analgesic components. The molecular mechanism underlying the anti-nociceptive effects of bufalin remains unclear so far. In this study, we investigated the pharmacological effects of bufalin on pain-related ion channels as well as animal models through patch clamping, calcium imaging and animal behavior observation. Using the whole-cell recording, bufalin caused remarkable suppressive effect on the peak currents of Nav channels (voltage gated sodium channels, VGSCs) of dorsal root ganglion neuroblastomas (ND7-23 cell) in a dose-dependent manner. Bufalin facilitated the voltage-dependent activation and induced a negative shift on the fast inactivation of VGSCs. The recovery kinetics of VGSCs were significantly slowed and the recovery proportion were reduced after administering bufalin. However, bufalin prompted no significant effect not only on Kv4.2, Kv4.3 and BK channels heterologously expressed in HEK293T cells, but also on the capsaicin and allyl isothiocyanate induced Ca2+ influx. What’s more, bufalin could observably relieve formalin-induced spontaneous flinching and licking response as well as carrageenan-induced thermal and mechanical hyperalgesia in dose-dependent manner in agreement with the results of in vitro experiments. The present results imply that the remarkable anti-nociceptive effects produced by bufalin are probably ascribed to its specific regulation on Nav channels. Bufalin inhibits the Nav channels in a dose-dependent manner, which will provide references for the optimal dose selection of analgesia drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

VGSCs:

Voltage-gated sodium channels

BK:

Large-conductance calcium-activated potassium channels

Kv :

Voltage-gated K+ channels

DRG:

Dorsal root ganglion

TRPV1:

Transient receptor potential vanilloid 1

TRPA1:

Transient receptor potential ankyrin 1

INaT :

Transient sodium currents

INaSS :

Steady-state sodium current

NPPB:

5-Nitro-2-(3-phenylpropylamino)benzoic acid

TTX:

Tetrodotoxin

AITC:

Allyl isothiocyanate

[Ca2+]i :

Intracellular calcium concentration

PWT:

Paw withdrawal threshold

PWL:

Paw withdrawal latency

HBSS:

Hank’s balanced salt solution

PARP1:

Ploy (ADP-ribose) polymerase 1

iNOS:

Nitric oxide synthase

TNF-α:

Tumor necrosis factor-α

NF-κB:

Nuclear factor kappa B

References

  1. Liu ZR, Ye P, Ji YH (2011) Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins. Protein Cell 2:437–444. https://doi.org/10.1007/s13238-011-1064-8

    Article  CAS  Google Scholar 

  2. Jiang F, Hua LM, Jiao YL, Ye P, Fu J, Cheng ZJ, Ding G, Ji YH (2014) Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator. Neurosci Bull 30:21–32. https://doi.org/10.1007/s12264-013-1377-0

    Article  CAS  PubMed  Google Scholar 

  3. Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, Ji YH (2012) Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neurosci Bull 28:209–221. https://doi.org/10.1007/s12264-012-1234-6

    Article  CAS  Google Scholar 

  4. Emery EC, Luiz AP, Wood JN (2016) Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 20:975–983. https://doi.org/10.1517/14728222.2016.1162295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie W, Strong JA, Ye L, Mao JX, Zhang JM (2013) Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain 154:1170–1180. https://doi.org/10.1016/j.pain.2013.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z, Wu G, Jin J, Ding B, Zhu X, Shen Y (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174

    Article  CAS  Google Scholar 

  7. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898. https://doi.org/10.1038/nature05413

    Article  CAS  PubMed  Google Scholar 

  8. Laird JM, Souslova V, Wood JN, Cervero F (2002) Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 22:8352–8356

    Article  CAS  Google Scholar 

  9. Wen L, Huang Y, Xie X, Huang W, Yin J, Lin W, Jia Q, Zeng W (2014) Anti-inflammatory and antinociceptive activities of bufalin in rodents. Mediators Inflamm 2014:171839. https://doi.org/10.1155/2014/171839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi F, Li A, Inagaki Y, Kokudo N, Tamura S, Nakata M, Tang W (2011) Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. Int Immunopharmacol 11:342–349. https://doi.org/10.1016/j.intimp.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  11. Chen KK, Kovarikova A (1967) Pharmacology and toxicology of toad venom. J Pharm Sci 56:1535–1541

    Article  CAS  Google Scholar 

  12. Pamnani MB, Chen S, Yuan CM, Haddy FJ (1994) Chronic blood pressure effects of bufalin, a sodium-potassium ATPase inhibitor, in rats. Hypertension 23:I106

    Article  CAS  Google Scholar 

  13. Yoshida S, Sakai T (1974) Mechanism of bufalin-induced blockade of neuromuscular transmission in isolated rat diaphragm. Jpn J Pharmacol 24:97–108

    Article  CAS  Google Scholar 

  14. Liu F, Tong D, Li H, Liu M, Li J, Wang Z, Cheng X (2016) Bufalin enhances antitumor effect of paclitaxel on cervical tumorigenesis via inhibiting the integrin alpha2/beta5/FAK signaling pathway. Oncotarget 7:8896–8907. https://doi.org/10.18632/oncotarget.6840

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Chen C, Wang S, Zhang Y, Yin P, Gao Z, Xu J, Feng D, Zuo Q, Zhao R, Chen T (2015) Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroenterol Res Pract 2015:457193. https://doi.org/10.1155/2015/457193

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang L, Zhao MN, Liu TY, Wu XS, Weng H, Ding Q, Shu YJ, Bao RF, Li ML, Mu JS, Wu WG, Ding QC, Cao Y, Hu YP, Shen BY, Tan ZJ, Liu YB (2014) Bufalin induces cell cycle arrest and apoptosis in gallbladder carcinoma cells. Tumour Biol 35:10931–10941. https://doi.org/10.1007/s13277-014-1911-3

    Article  CAS  PubMed  Google Scholar 

  17. Qiu YY, Hu Q, Tang QF, Feng W, Hu SJ, Liang B, Peng W, Yin PH (2014) MicroRNA-497 and bufalin act synergistically to inhibit colorectal cancer metastasis. Tumour Biol 35:2599–2606. https://doi.org/10.1007/s13277-013-1342-6

    Article  CAS  PubMed  Google Scholar 

  18. Gu W, Liu L, Fang FF, Huang F, Cheng BB, Li B (2014) Reversal effect of bufalin on multidrug resistance in human hepatocellular carcinoma BEL-7402/5-FU cells. Oncol Rep 31:216–222. https://doi.org/10.3892/or.2013.2817

    Article  CAS  PubMed  Google Scholar 

  19. Kang XH, Zhang JH, Zhang QQ, Cui YH, Wang Y, Kou WZ, Miao ZH, Lu P, Wang LF, Xu ZY, Cao F (2017) Degradation of Mcl-1 through GSK-3beta activation regulates apoptosis induced by bufalin in non-small cell lung cancer H1975 cells. Cell Physiol Biochem 41:2067–2076. https://doi.org/10.1159/000475438

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Zhang D, Li Y, Chen W, Ruan Z, Deng L, Wang L, Tian H, Yiu A, Fan C, Luo H, Liu S, Wang Y, Xiao G, Chen L, Ye W (2013) Discovery of bufadienolides as a novel class of ClC-3 chloride channel activators with antitumor activities. J Med Chem 56:5734–5743. https://doi.org/10.1021/jm400881m

    Article  CAS  PubMed  Google Scholar 

  21. Rogers M, Zidar N, Kikelj D, Kirby RW (2016) Characterization of endogenous sodium channels in the ND7-23 neuroblastoma cell line: implications for use as a heterologous ion channel expression system suitable for automated patch clamp screening. Assay Drug Dev Technol 14:109–130. https://doi.org/10.1089/adt.2016.704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith AL, Nakata T, Wu Z, Kohsaka S, Inoue K, Nakanishi H (2016) BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun 7:11697. https://doi.org/10.1038/ncomms11697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shutov LP, Warwick CA, Shi X, Gnanasekaran A, Shepherd AJ, Mohapatra DP, Woodruff TM, Clark JD, Usachev YM (2016) The complement system component C5a produces thermal hyperalgesia via macrophage-to-nociceptor signaling that requires NGF and TRPV1. J Neurosci 36:5055–5070. https://doi.org/10.1523/JNEUROSCI.3249-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, Gereau RWt (2006) The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50:89–100. https://doi.org/10.1016/j.neuron.2006.03.010

    Article  CAS  PubMed  Google Scholar 

  25. Duan KZ, Xu Q, Zhang XM, Zhao ZQ, Mei YA, Zhang YQ (2012) Targeting A-type K(+) channels in primary sensory neurons for bone cancer pain in a rat model. Pain 153:562–574. https://doi.org/10.1016/j.pain.2011.11.020

    Article  CAS  Google Scholar 

  26. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  CAS  Google Scholar 

  27. Abbott FV, Franklin KB, Westbrook RF (1995) The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 60:91–102

    Article  CAS  Google Scholar 

  28. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301

    Article  Google Scholar 

  29. Tao J, Zhou ZL, Wu B, Shi J, Chen XM, Ji YH (2014) Recombinant expression and functional characterization of martentoxin: a selective inhibitor for BK channel (alpha + beta4). Toxins (Basel) 6:1419–1433. https://doi.org/10.3390/toxins6041419

    Article  CAS  Google Scholar 

  30. Chen Q, Tao J, Hei H, Li F, Wang Y, Peng W, Zhang X (2015) Up-regulatory effects of curcumin on large conductance Ca2+-activated K + channels. PLoS ONE 10:e0144800. https://doi.org/10.1371/journal.pone.0144800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP (2017) Store-operated interactions between plasmalemmal STIM1 and TRPC1 proteins stimulate PLCbeta1 to induce TRPC1 channel activation in vascular smooth muscle cells. J Physiol 595:1039–1058. https://doi.org/10.1113/JP273302

    Article  CAS  PubMed  Google Scholar 

  32. Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP (2016) Store depletion induces Galphaq-mediated PLCbeta1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J 30:702–715. https://doi.org/10.1096/fj.15-280271

    Article  CAS  PubMed  Google Scholar 

  33. Wei Y, Wang Y, Wang Y, Bai L (2017) Transient receptor potential vanilloid 5 mediates Ca2 + influx and inhibits chondrocyte autophagy in a rat osteoarthritis model. Cell Physiol Biochem 42:319–332. https://doi.org/10.1159/000477387

    Article  CAS  PubMed  Google Scholar 

  34. Zhu MM, Tao J, Tan M, Yang HT, Ji YH (2009) U-shaped dose-dependent effects of BmK AS, a unique scorpion polypeptide toxin, on voltage-gated sodium channels. Br J Pharmacol 158:1895–1903. https://doi.org/10.1111/j.1476-5381.2009.00471.x

    Article  CAS  Google Scholar 

  35. Fusi C, Materazzi S, Benemei S, Coppi E, Trevisan G, Marone IM, Minocci D, De Logu F, Tuccinardi T, Di Tommaso MR, Susini T, Moneti G, Pieraccini G, Geppetti P, Nassini R (2014) Steroidal and non-steroidal third-generation aromatase inhibitors induce pain-like symptoms via TRPA1. Nat Commun 5:5736. https://doi.org/10.1038/ncomms6736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karim F, Wang CC, Gereau, RWt (2001) Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21:3771–3779

    Article  CAS  Google Scholar 

  37. Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64:345–355

    Article  CAS  Google Scholar 

  38. Hedo G, Laird JM, Lopez-Garcia JA (1999) Time-course of spinal sensitization following carrageenan-induced inflammation in the young rat: a comparative electrophysiological and behavioural study in vitro and in vivo. Neuroscience 92:309–338

    Article  CAS  Google Scholar 

  39. Pang RP, Xie MX, Yang J, Shen KF, Chen X, Su YX, Yang C, Tao J, Liang SJ, Zhou JG, Zhu HQ, Wei XH, Li YY, Qin ZH, Liu XG (2016) Downregulation of ClC-3 in dorsal root ganglia neurons contributes to mechanical hypersensitivity following peripheral nerve injury. Neuropharmacology 110:181–189. https://doi.org/10.1016/j.neuropharm.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  40. Huang H, Cao Y, Wei W, Liu W, Lu SY, Chen YB, Wang Y, Yan H, Wu YL (2013) Targeting poly (ADP-ribose) polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells. PLoS ONE 8:e66130. https://doi.org/10.1371/journal.pone.0066130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins TR (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration. J Biol Chem 283:27300–27313. https://doi.org/10.1074/jbc.M708447200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shelykh TN, Plakhova VB, Podzorova SA, Bagrov AY, Krylov BV (2014) Modulating effect of the cardiotonic steroid marinobufagenin on slow sodium channels. Dokl Biol Sci 458:278–280. https://doi.org/10.1134/S0012496614050111

    Article  CAS  PubMed  Google Scholar 

  43. Hao S, Bao YM, Zhao RG, Wang HS, Bi J, An LJ, Jiang B (2011) Effects of resibufogenin on voltage-gated sodium channels in cultured rat hippocampal neurons. Neurosci Lett 501:112–116. https://doi.org/10.1016/j.neulet.2011.06.059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Tong Liu (Soochow University), Prof. Ren Lai (Kunming Institute of Zoology, Chinese Academy of Sciences), Prof. Kaoru Yamaoka (Tokyo University of Agriculture and Technology), Prof. Noel Davies (University of Leicester), Prof. Jiuping Ding (Huazhong University of Science and Technology) and Prof. Ping Song (Yale University) for providing the plasmids comprising genes of hSloα, hKv4.2, hKv4.3, rNav 1.5, mNav 1.7, TRPA1 and TRPV1, respectively.

Funding

This work was supported by National Science Foundation of China (No. 81603410, 81473482 and 81402903), Innovation Fund of Putuo District Health System (No. 17-PT-10), the “Twelfth Five Year” Key Subject (Integrated Chinese and Western Medicine) of State Administration of Traditional Medicine of China, Shanghai Municipal Commission of Health and Family Planning Fund (No. 20134Y022) and Research Project of Putuo Hospital, Shanghai University of Traditional Chinese Medicine (No. 2016208A).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JT, PY, KX. Performed the experiments: JT, FJ, CL, YZ, JX. Analyzed the data: JT, JX, ZL. Contributed reagents/Materials/Analysis tools: FJ, ZL, YG. Wrote the paper: JT, CL.

Corresponding authors

Correspondence to Jie Tao, Kan Xu or Peihao Yin.

Ethics declarations

Conflict of interest

All authors have reviewed the final version of the manuscript and approve it for publication. This manuscript has not been published in whole or in part nor is it being considered for publication elsewhere. The authors have no conflicts of interest to declare.

Ethical approval

The protocols of animal experiments complied with the current ethical considerations of Shanghai University of Traditional Chinese Medicine’s Animal Ethic Committee, which is in accordance with the National Research Council criteria. All animal experiments and procedures were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai University of Traditional Chinese Medicine and were performed in accordance with the relevant guidelines and regulations as well as approved by the guidelines on ethical standards for investigation of experimental pain in conscious animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Jiang, F., Liu, C. et al. Modulatory effects of bufalin, an active ingredient from toad venom on voltage-gated sodium channels. Mol Biol Rep 45, 721–740 (2018). https://doi.org/10.1007/s11033-018-4213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4213-9

Keywords

Navigation