Skip to main content
Log in

The c.−190 C>A transversion in promoter region of protamine1 gene as a genetic risk factor for idiopathic oligozoospermia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The genome condensation in the sperm head is resulted with replacing of histones by protamines during spermatogenesis. It is reported that defects in the protamine 1 (PRM1) and/or 2 (PRM2) genes cause male infertility. Located on chromosome 16 (16p13.2) these genes contain numerous unstudied single nucleotide polymorphisms. This study aimed to investigate the association of c.−190 C>A and g.298 G>C transversions that respectively occur in PRM1 and PRM2 genes with idiopathic oligozoospermia. In a case–control study, we collected blood samples from 130 idiopathic oligozoospermia and 130 fertile men. Detection of c.−190 C>A and g.298 G>C polymorphisms performed by direct sequencing and PCR–RFLP methods respectively. An in silico analysis was performed by ASSP, NetGene 2, and PNImodeler online web servers. Our data revealed that g.298 G>C transversion in PRM2 was not associated with oligozoospermia (P > 0.05). Whereas, −190CA and −190AA genotypes in PRM1 gene were associated significantly with increased risk of oligozoospermia (P = 0.0017 and 0.0103, respectively). Also carriers of A allele (CA+AA) for PRM1 c.−190 C>A were at a high risk for oligozoospermia (OR 3.2440, 95 % CI 1.8060–5.8270, P = 0.0001). Further, in silico analysis revealed that c.−190 C>A transversion may alter transcription factor interactions with the promoter region of PRM1. The results revealed that the c.−190 C>A transversion may involve in the susceptibility for oligozoospermia and could be represented as a noninvasive molecular marker for genetic diagnosis of idiopathic oligozoospermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nuti F, Krausz C (2008) Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 16:504–513

    Article  CAS  PubMed  Google Scholar 

  2. Ferlin A, Arredi B, Foresta C (2006) Genetic causes of male infertility. Reprod Toxicol 22:133–141

    Article  CAS  PubMed  Google Scholar 

  3. Ying HQ, Scott MB, Zhou-Cun A (2012) Relationship of SNP of H2BFWT gene to male infertility in a Chinese population with idiopathic spermatogenesis impairment. Biomarkers 17:402–406

    Article  CAS  PubMed  Google Scholar 

  4. Oliva R, Dixon GH (1990) Vertebrate protamine gene evolution I. Sequence alignments. J Mol Evol 30:333–346

    Article  CAS  PubMed  Google Scholar 

  5. Retief JD, Winkfein RJ, Dixon GH, Adroer R, Queralt R, Ballabriga J, Oliva R (1993) Evolution of protamine P1 genes in primates. J Mol Evol 37:426–434

    Article  CAS  PubMed  Google Scholar 

  6. Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435

    Article  CAS  PubMed  Google Scholar 

  7. Christensen ME, Rattner JB, Dixon GH (1984) Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res 12:4575–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tanaka H, Miyagawa Y, Tsujimura A, Matsumiya K, Okuyama A, Nishimune Y (2003) Single nucleotide polymorphisms in the protamine-1 and -2 genes of fertile and infertile human male populations. Mol Hum Reprod 9:69–73

    Article  CAS  PubMed  Google Scholar 

  9. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:82–86

    CAS  PubMed  Google Scholar 

  10. He XJ, Ruan J, Du WD, Chen G, Zhou Y, Xu S, Zuo XB, Cao YX, Zhang XJ (2012) PRM1 variant rs35576928 (Arg>Ser) is associated with defective spermatogenesis in the Chinese Han population. Reprod BioMed Online 25:627–634

    Article  CAS  PubMed  Google Scholar 

  11. Tüttelmann F, Krenková P, Römer S, Nestorovic AR, Ljujic M, Stambergová A, Macek M Jr, Macek M Sr, Nieschlag E, Gromoll J, Simoni M (2010) A common haplotype of protamine 1 and 2 genes is associated with higher sperm counts. Int J Androl 33:e240–e248

    Article  PubMed  Google Scholar 

  12. World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm–cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  13. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  14. Im J, Tuvshinjargal N, Park B, Lee W, Huang DS, Han K (2015) PNImodeler: web server for inferring protein binding nucleotides from sequence data. BMC Genomics 16(Suppl 3):S6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E (2003) MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31:3576–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang M, Marín A (2006) Characterization and prediction of alternative splice sites. Gene 366:219–227

    Article  CAS  PubMed  Google Scholar 

  17. Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouzé P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wosnitzer MS (2014) Genetic evaluation of male infertility. Transl Androl Urol 3:17–26

    PubMed  PubMed Central  Google Scholar 

  19. Meng X, Yang S, Zhang Y, Wang X, Goodfellow RX, Jia Y, Thiel KW, Reyes HD, Yang B, Leslie KK (2015) Genetic deficiency of Mtdh gene in mice causes male infertility via impaired spermatogenesis and alterations in the expression of small non-coding RNAs. J Biol Chem 290:11853–11864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura N, Dai Q, Williams J, Goulding EH, Willis WD, Brown PR, Eddy EM (2013) Disruption of a spermatogenic cell-specific mouse enolase 4 (eno4) gene causes sperm structural defects and male infertility. Biol Reprod 88:90

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pan B, Li R, Chen Y, Tang Q, Wu W, Chen L, Lu C, Pan F, Ding H, Xia Y, Hu L, Chen D, Sha J, Wang X (2016) Genetic association between androgen receptor gene CAG repeat length polymorphism and male infertility: a meta-analysis. Medicine (Baltimore) 95:e2878

    Article  CAS  Google Scholar 

  22. Zalata A, Atwa A, El-Naser Badawy A, Aziz A, El-Baz R, Elhanbly S, Mostafa T (2013) Tumor necrosis factor-α gene polymorphism relationship to seminal variables in infertile men. Urology 81:962–966

    Article  PubMed  Google Scholar 

  23. Karimian M, Colagar AH (2014) Association of C677T transition of the human methylenetetrahydrofolate reductase (MTHFR) gene with male infertility. Reprod Fertil Dev. doi:10.1071/RD14186

    Google Scholar 

  24. Nikzad H, Karimian M, Sareban K, Khoshsokhan M, Hosseinzadeh Colagar A (2015) MTHFR-Ala222Val and male infertility: a study in Iranian men, an updated meta-analysis and an in silico-analysis. Reprod Biomed Online 31:668–680

    Article  CAS  PubMed  Google Scholar 

  25. Karimian M, Hosseinzadeh Colagar A (2016) Methionine synthase A2756G transition might be a risk factor for male infertility: evidences from seven case-control studies. Mol Cell Endocrinol 425:1–10

    Article  CAS  PubMed  Google Scholar 

  26. Gázquez C, Oriola J, de Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R (2008) A common protamine 1 promoter polymorphism (−190 C→A) correlates with abnormal sperm morphology and increased protamine P1/P2 ratio in infertile patients. J Androl 29:540–548

    Article  PubMed  Google Scholar 

  27. Yu QF, Yang XX, Li FX, Ye LW, Wu YS, Mao XM (2012) Association of PRM1−190C→A polymorphism with teratozoospermia. Zhonghua Nan Ke Xue 18:314–317 (in Chinese)

    CAS  PubMed  Google Scholar 

  28. Ravel C, Chantot-Bastaraud S, El Houate B, Berthaut I, Verstraete L, De Larouziere V, Lourenço D, Dumaine A, Antoine JM, Mandelbaum J, Siffroi JP, McElreavey K (2007) Mutations in the protamine 1 gene associated with male infertility. Mol Hum Reprod 13:461–464

    Article  CAS  PubMed  Google Scholar 

  29. Imken L, Rouba H, El Houate B, Louanjli N, Barakat A, Chafik A, McElreavey K (2009) Mutations in the protamine locus: association with spermatogenic failure? Mol Hum Reprod 15:733–738

    Article  CAS  PubMed  Google Scholar 

  30. Aoki VW, Christensen GL, Atkins JF, Carrell DT (2006) Identification of novel polymorphisms in the nuclear protein genes and their relationship with human spermprotamine deficiency and severe male infertility. Fertil Steril 86:1416–1422

    Article  CAS  PubMed  Google Scholar 

  31. Grassetti D, Paoli D, Gallo M, D’Ambrosio A, Lombardo F, Lenzi A, Gandini L (2012) Protamine-1 and -2 polymorphisms and gene expression in male infertility: an Italian study. J Endocrinol Invest 35:882–888

    CAS  PubMed  Google Scholar 

  32. Jodar M, Oriola J, Mestre G, Castillo J, Giwercman A, Vidal-Taboada JM, Ballescà JL, Oliva R (2011) Polymorphisms, haplotypes and mutations in the protamine 1 and 2 genes. Int J Androl 34:470–485

    Article  CAS  PubMed  Google Scholar 

  33. Jiang W, Sun H, Zhang J, Zhou Q, Wu Q, Li T, Zhang C, Li W, Zhang M, Xia X (2015) Polymorphisms in Protamine 1 and Protamine 2 predict the risk of male infertility: a meta-analysis. Scientific Reports 5:15300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mengual L, Ballescá JL, Ascaso C, Oliva R (2003) Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl 24:438–447

    Article  PubMed  Google Scholar 

  35. Sotolongo B, Lino E, Ward WS (2003) Ability of hamster spermatozoa to digest their own DNA. Biol Reprod 69:2029–2035

    Article  CAS  PubMed  Google Scholar 

  36. Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha′ catalytic subunit. Nat Genet 23:118–121

    Article  CAS  PubMed  Google Scholar 

  37. Mitchell V, Steger K, Marchetti C, Herbaut JC, Devos P, Rigot JM (2005) Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod 11:373–379

    Article  CAS  PubMed  Google Scholar 

  38. Nadeau JH (2002) Single nucleotide polymorphisms: tackling complexity. Nature 420:517–518

    Article  CAS  PubMed  Google Scholar 

  39. Carrell DT, Emery BR, Hammoud S (2007) Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 13:313–327

    Article  CAS  PubMed  Google Scholar 

  40. Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296:2176–2178

    Article  CAS  PubMed  Google Scholar 

  41. Aoki VW, Liu L, Carrell DT (2005) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Medvedev S, Yu J, Tang LC, Agno JE, Matzuk MM, Schultz RM, Hecht NB (2005) Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci USA 102:5755–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Steger K, Pauls K, Klonisch T, Franke FE, Bergmann M (2000) Expression of protamine-1 and -2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225

    Article  CAS  PubMed  Google Scholar 

  44. Maclean JA 2nd, Wilkinson MF (2005) Gene regulation in spermatogenesis. Curr Top Dev Biol 71:131–197

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka H, Baba T (2005) Gene expression in spermiogenesis. Cell Mol Life Sci 62:344–354

    Article  CAS  PubMed  Google Scholar 

  46. DeJong J (2006) Basic mechanisms for the control of germ cell gene expression. Gene 366:39–50

    Article  CAS  PubMed  Google Scholar 

  47. Chennathukuzhi V, Morales CR, El-Alfy M, Hecht NB (2003) The kinesin KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive element modulator-regulated mRNAs in male germ cells. Proc Natl Acad Sci USA 100:15566–15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aftabi Younes, Colagar Abasalt Hosseinzadeh, Mehrnejad Faramarz (2016) An in silico approach to investigation of the source of controversial interpretations about phenotypic results of human AhR-gene G1661A polymorphism. J Theor Biol. doi:10.1016/j.jtbi.2016.01.001

    PubMed  Google Scholar 

  49. Karimian Mohammad, Nikzad Hossein, Tameh Abolfazl Azami, Taherian Aliakbar, Darvishi Fatemeh Zahra, Haghighatnia Mohammad Javad (2015) SPO11-C631T gene polymorphism: association with male infertility and an in silico-analysis. J Family Reprod Health 9:155–163

    PubMed  PubMed Central  Google Scholar 

  50. Vandromme M, Gauthier-Rouvière C, Carnac G, Lamb N, Fernandez A (1992) Serum response factor p67SRF is expressed and required during myogenic differentiation of both mouse C2 and rat L6 muscle cell lines. J Cell Biol 118:1489–1500

    Article  CAS  PubMed  Google Scholar 

  51. Bertolotto C, Ricci JE, Luciano F, Mari B, Chambard JC, Auberger P (2000) Cleavage of the serum response factor during death receptor-induced apoptosis results in an inhibition of the c-FOS promoter transcriptional activity. J Biol Chem 275:12941–12947

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nikzad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2016_4017_MOESM1_ESM.tif

Supplementary material 1 (TIFF 705 kb) Fig. S1 ASSP prediction results. Splice sites prediction when nucleotide G locates in the position 298 (A); Splice sites after C substitution in the 298 (B)

11033_2016_4017_MOESM2_ESM.tif

Supplementary material 2 (TIFF 290 kb) Fig. S2 NetGene2 prediction results: Splice sites prediction in the case of nucleotide G locates in the position 298 (A); Splice sites pattern after C substitution in the 298 (B). CUTOFF values used for confidence: Highly confident donor sites (H):95.0 %; Nearly all true donor sites: 50.0 %; Highly confident acceptor sites (H):95.0 %; nearly all true acceptor sites: 20.0 %

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, S., Karimian, M., Nikzad, H. et al. The c.−190 C>A transversion in promoter region of protamine1 gene as a genetic risk factor for idiopathic oligozoospermia. Mol Biol Rep 43, 795–802 (2016). https://doi.org/10.1007/s11033-016-4017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4017-8

Keywords

Navigation