Skip to main content

Advertisement

Log in

Functional analysis and molecular characterization of spontaneously outgrown human lymphoblastoid cell lines

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In vitro, the infection of human B-cells with the lymphotropic gammaherpesvirus Epstein-Barr virus (EBV) induces formation of permanently growing lymphoblastoid cell lines (LCL). In a spontaneously outgrown LCL (cell line CSIII), we detected nucleotide sequence variations of the EBV nuclear antigen 1 (EBNA1) RNA that was different from the reference sequence of EBNA1 in the prototypic EBV strain B95-8. In the present study, we molecularly and functionally characterized this virus isolate in comparison to LCL with the prototypic nucleotide sequence. Although we detected high functional similarity between CSIII and the other LCL, our data suggest that the lytic cycle might be ineffective in the CSIII LCL. DNA microarray analysis indicated that RNA binding motif, single stranded interacting protein 1 (RBMS1), which is typically expressed in latency III of EBV to prevent the lytic cycle, was the most overexpressed gene in CSIII LCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cells

BIN1:

Bridging integrator 1

EBER1:

EBV encoded non-coding RNA 1

EBNA1:

EBV nuclear antigen 1

EBV:

Epstein-Barr virus

FACS:

Fluorescence activated cell scanning

FCS:

Fetal calf serum

FITC:

Fluorescein isothiocyanate

LCL:

Lymphoblastoid cell line

LMP2:

Latent membrane protein 2

MFI:

Mean fluorescence intensity

MLC:

Mixed lymphocyte culture

PBMC:

Peripheral blood mononuclear cells

PBS:

Phosphate buffered saline

PCGF2:

Polycomb group ring finger 2

PDCD1LG2:

Programmed cell death 1 ligand 2

PE:

Phycoerythrin

RBMS1:

RNA binding motif, single stranded interacting protein 1

SI:

Stimulation index

TPA:

12-O-tetradecanoylphorbol-13-acetate

References

  1. Mello AS, Burin MG, Michellin K, Viapiana M, Giugliani R, Coelho JC, Bauer ME (2006) Epstein-Barr virus-induced transformation of B cells for the diagnosis of genetic metabolic disorders—enumerative conditions for cryopreservation. Cell Prolif 39:29–36

    Article  CAS  PubMed  Google Scholar 

  2. Morag A, Kirchheiner J, Rehavi M, Gurwitz D (2010) Human lymphoblastoid cell line panels: novel tools for assessing shared drug pathways. Pharmacogenomics 11:327–340

    Article  CAS  PubMed  Google Scholar 

  3. Stark AL, Zhang W, Mi S, Duan S, O’Donnell PH, Huang RS, Dolan ME (2010) Heritable and non-genetic factors as variables of pharmacologic phenotypes in lymphoblastoid cell lines. Pharmacogenomics J 10:505–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Amoli MM, Carthy D, Platt H, Ollier WE (2008) EBV Immortalization of human B lymphocytes separated from small volumes of cryo-preserved whole blood. Int J Epidemiol 37(Suppl 1):i41–i45

    Article  PubMed  Google Scholar 

  5. Grønborg S, Krätzner R, Rosewich H, Gärtner J (2011) Lymphoblastoid cell lines for diagnosis of peroxisome biogenesis disorders. JIMD Rep 1:29–36

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hammerschmidt W, Sugden B (2004) Epstein-Barr virus sustains Burkitt’s lymphomas and Hodgkin’s disease. Trends Mol Med 10:331–336

    Article  CAS  PubMed  Google Scholar 

  7. Pattle SB, Farrell PJ (2006) The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther 6:1193–1205

    Article  CAS  PubMed  Google Scholar 

  8. Issekutz T, Chu E, Geha RS (1982) Antigen presentation by human B cells: T cell proliferation induced by Epstein Barr virus B lymphoblastoid cells. J Immunol 129:1446–1450

    CAS  PubMed  Google Scholar 

  9. Moosmann A, Khan N, Cobbold M, Zentz C, Delecluse HJ, Hollweck G, Hislop AD, Blake NW, Croom-Carter D, Wollenberg B, Moss PA, Zeidler R, Rickinson AB, Hammerschmidt W (2002) B cells immortalized by a mini-Epstein-Barr virus encoding a foreign antigen efficiently reactivate specific cytotoxic T cells. Blood 100:1755–1764

    CAS  PubMed  Google Scholar 

  10. Leung CS, Maurer MA, Meixlsperger S, Lippmann A, Cheong C, Zuo J, Haigh TA, Taylor GS, Münz C (2013) Robust T-cell stimulation by Epstein-Barr virus-transformed B cells after antigen targeting to DEC-205. Blood 121:1584–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kubuschok B, Schmits R, Hartmann F, Cochlovius C, Breit R, Konig J, Pistorius G, Schilling M, Renner C, Pfreundschuh M (2002) Use of spontaneous Epstein-Barr virus-lymphoblastoid cell lines genetically modified to express tumor antigen as cancer vaccines: mutated p21 ras oncogene in pancreatic carcinoma as a model. Hum Gene Ther 13:815–827

    Article  CAS  PubMed  Google Scholar 

  12. Choy E, Yelensky R, Bonakdar S, Plenge RM, Saxena R, De Jager PL, Shaw SY, Wolfish CS, Slavik JM, Cotsapas C, Rivas M, Dermitzakis ET, Cahir-McFarland E, Kieff E, Hafler D, Daly MJ, Altshuler D (2008) Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines. PLoS Genet 4:e1000287

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hoennscheidt C, Max D, Richter N, Staege MS (2009) Expression of CD4 on Epstein-Barr virus-immortalized B cells. Scand J Immunol 70:216–225

    Article  CAS  PubMed  Google Scholar 

  14. Min JL, Barrett A, Watts T, Pettersson FH, Lockstone HE, Lindgren CM, Taylor JM, Allen M, Zondervan KT, McCarthy MI (2010) Variability of gene expression profiles in human blood and lymphoblastoid cell lines. BMC Genomics 11:96

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G, Tu Y, Stolovitzky GA, Califano A, Hansmann ML, Dalla-Favera R (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111:529–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sun YV, Turner ST, Smith JA, Hammond PI, Lazarus A, Van De Rostyne JL, Cunningham JM, Kardia SL (2010) Comparison of the DNA methylation profiles of human peripheral blood cells and transformed B-lymphocytes. Hum Genet 127:651–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kubuschok B, Pfreundschuh M, Breit R, Hartmann F, Sester M, Gärtner B, König J, Murawski N, Held G, Zwick C, Neumann F (2012) Mutated Ras-transfected, EBV-transformed lymphoblastoid cell lines as a model tumor vaccine for boosting T-cell responses against pancreatic cancer: a pilot trial. Hum Gene Ther 23:1224–1236

    Article  CAS  PubMed  Google Scholar 

  18. Foell JL, Volkmer I, Giersberg C, Kornhuber M, Horneff G, Staege MS (2008) Loss of detectability of Charcot-Leyden crystal protein transcripts in blood cells after treatment with dimethyl sulfoxide. J Immunol Methods 339:99–103

    Article  CAS  PubMed  Google Scholar 

  19. Minowada J, Onuma T, Moore GE (1972) Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst 49:891–895

    CAS  PubMed  Google Scholar 

  20. Miller G, Shope T, Lisco H, Stitt D, Lipman M (1972) Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci USA 69:383–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kempkes B, Spitkovsky D, Jansen-Durr P, Ellwart JW, Kremmer E, Delecluse HJ, Rottenberger C, Bornkamm GW, Hammerschmidt W (1995) B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J 14:88–96

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Staege MS, Lee SP, Frisan T, Mautner J, Scholz S, Pajic A, Rickinson AB, Masucci MG, Polack A, Bornkamm GW (2002) MYC overexpression imposes a nonimmunogenic phenotype on Epstein-Barr virus-infected B cells. Proc Natl Acad Sci USA 99:4550–4555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS, Brielmeier M, Ellwart J, Kohlhuber F, Bornkamm GW, Polack A, Eick D (2000) Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 87:787–793

    Article  CAS  PubMed  Google Scholar 

  24. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, Afar D, Burdach SE (2004) DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64:8213–8221

    Article  CAS  PubMed  Google Scholar 

  25. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  26. Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A, Kieff E (1990) Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol 64:4084–4092

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Miller G, Lipman M (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 70:190–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Amon W, Farrell PJ (2005) Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15:149–156

    Article  PubMed  Google Scholar 

  29. Brink AA, Meijer CJ, Nicholls JM, Middeldorp JM, van den Brule AJ (2001) Activity of the EBNA1 promoter associated with lytic replication (Fp) in Epstein-Barr virus associated disorders. Mol Pathol 54:98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sivachandran N, Wang X, Frappier L (2012) Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J Virol 86:6146–6158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Metzenberg S (1990) Levels of Epstein-Barr virus DNA in lymphoblastoid cell lines are correlated with frequencies of spontaneous lytic growth but not with levels of expression of EBNA-1, EBNA-2, or latent membrane protein. J Virol 64:437–444

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Berthomé M, Gallot G, Vivien R, Clémenceau B, Nguyen JM, Coste-Burel M, Vié H (2010) Viral DNA contamination is responsible for Epstein-Barr virus detection in cytotoxic T lymphocytes stimulated in vitro with Epstein-Barr virus B-lymphoblastoid cell line. Cancer Immunol Immunother 59:1867–1875

    Article  PubMed  Google Scholar 

  33. Portis T, Dyck P, Longnecker R (2003) Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102:4166–4178

    Article  CAS  PubMed  Google Scholar 

  34. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR, Kutok JL, Shipp MA (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–3277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Pan K, Liang XT, Zhang HK, Zhao JJ, Wang DD, Li JJ, Lian Q, Chang AE, Li Q, Xia JC (2012) Characterization of bridging integrator 1 (BIN1) as a potential tumor suppressor and prognostic marker in hepatocellular carcinoma. Mol Med 18:507–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhang XW, Sheng YP, Li Q, Qin W, Lu YW, Cheng YF, Liu BY, Zhang FC, Li J, Dimri GP, Guo WJ (2010) BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer 9:40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Leight ER, Sugden B (2000) EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus. Rev Med Virol 10:83–100

    Article  CAS  PubMed  Google Scholar 

  38. Frappier L (2012) Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses 4:1537–1547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Caliskan M, Cusanovich DA, Ober C, Gilad Y (2011) The effects of EBV transformation on gene expression levels and methylation profiles. Hum Mol Genet 20:1643–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bullaughey K, Chavarria CI, Coop G, Gilad Y (2009) Expression quantitative trait loci detected in cell lines are often present in primary tissues. Hum Mol Genet 18:4296–4303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhang XS, Wang HH, Hu LF, Li A, Zhang RH, Mai HQ, Xia JC, Chen LZ, Zeng YX (2004) V-val subtype of Epstein-Barr virus nuclear antigen 1 preferentially exists in biopsies of nasopharyngeal carcinoma. Cancer Lett 211:11–18

    Article  CAS  PubMed  Google Scholar 

  42. Gutierrez MI, Raj A, Spangler G, Sharma A, Hussain A, Judde JG, Tsao SW, Yuen PW, Joab I, Magrath IT, Bhatia K (1997) Sequence variations in EBNA-1 may dictate restriction of tissue distribution of Epstein-Barr virus in normal and tumour cells. J Gen Virol 78:1663–1670

    CAS  PubMed  Google Scholar 

  43. Cui Y, Wang Y, Liu X, Chao Y, Xing X, Zhao C, Liu C, Luo B (2011) Genotypic analysis of Epstein-Barr virus isolates associated with nasopharyngeal carcinoma in Northern China. Intervirology 54:131–138

    Article  CAS  PubMed  Google Scholar 

  44. Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K (2009) The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res 143:209–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin S. Staege.

Additional information

Toralf Bernig and Nicole Richter have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernig, T., Richter, N., Volkmer, I. et al. Functional analysis and molecular characterization of spontaneously outgrown human lymphoblastoid cell lines. Mol Biol Rep 41, 6995–7007 (2014). https://doi.org/10.1007/s11033-014-3587-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3587-6

Keywords

Navigation