Skip to main content

Advertisement

Log in

Viral DNA contamination is responsible for Epstein–Barr virus detection in cytotoxic T lymphocytes stimulated in vitro with Epstein–Barr virus B-lymphoblastoid cell line

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Epstein–Barr virus (EBV)-transformed B-lymphoblastoid cell lines (LCLs) are used to prepare human EBV-specific T lymphocytes (EBV-CTL) in vitro. Within an LCL, up to 5–7% the cells release infectious EBV, and this has fostered safety concerns for therapeutic applications because of the exposure of T cells to EBV. The release of infectious viruses can be prevented by ganciclovir, but this drug may seriously affect LCL growth. In the wake of these concerns, the present work was designed to compile safety data on EBV-CTL preparation for the purpose of submission to a regulatory agency. We showed that further to supernatant exclusion, the number of EBV genome copies (EBVc) associated with the EBV-CTL always made up a constant proportion of the EBVc number detected in the culture supernatant. In addition, such was the case whether infectious virus could be produced by the LCL or not, suggesting that the EBV signal detected was due to a DNA contamination rather than an infection. Furthermore, we demonstrated that the number of EBVc associated with the EBV-CTL was highly sensitive to DNAse treatment, and finally that EBVc could no longer be detected after the EBV-CTL had been amplified in the absence of LCL. Consequently, during in vitro EBV-CTL preparation, either T cells cannot be infected or they die rapidly after EBV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Metzenberg S (1990) Levels of Epstein-Barr virus DNA in lymphoblastoid cell lines are correlated with frequencies of spontaneous lytic growth but not with levels of expression of EBNA-1, EBNA-2, or latent membrane protein. J Virol 64:437–444

    CAS  PubMed  Google Scholar 

  2. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  CAS  PubMed  Google Scholar 

  3. Haque T, Amlot PL, Helling N, Thomas JA, Sweny P, Rolles K, Burroughs AK, Prentice HG, Crawford DH (1998) Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol 160:6204–6209

    CAS  PubMed  Google Scholar 

  4. Heslop H, Rooney C, Brenner M, Krance R, Carrum G, Gahn B, Bollard C, Khan S, Gee A, Popat U et al (2000) Administration of neomycin resistance gene-marked EBV-specific cytotoxic T-lymphocytes as therapy for patients receiving a bone marrow transplant for relapsed EBV-positive Hodgkin disease. Hum Gene Ther 11:1465–1475

    Article  CAS  PubMed  Google Scholar 

  5. Lucas KG, Sun Q, Burton RL, Tilden A, Vaughan WP, Carabasi M, Salzman D, Ship A (2000) A phase I-II trial to examine the toxicity of CMV- and EBV-specific cytotoxic T lymphocytes when used for prophylaxis against EBV and CMV disease in recipients of CD34-selected/T cell-depleted stem cell transplants. Hum Gene Ther 11:1453–1463

    Article  CAS  PubMed  Google Scholar 

  6. Dreno B, Nguyen JM, Khammari A, Pandolfino MC, Tessier MH, Bercegeay S, Cassidanius A, Lemarre P, Billaudel S, Labarriere N, Jotereau F (2002) Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol Immunother 51:539–546

    Article  CAS  PubMed  Google Scholar 

  7. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ et al (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115:925–935

    Article  CAS  PubMed  Google Scholar 

  8. Merlo A, Turrini R, Dolcetti R, Zanovello P, Amadori A, Rosato A (2008) Adoptive cell therapy against EBV-related malignancies: a survey of clinical results. Expert Opin Biol Ther 8:1265–1294

    Article  CAS  PubMed  Google Scholar 

  9. Harabuchi Y, Yamanaka N, Kataura A, Imai S, Kinoshita T, Mizuno F, Osato T (1990) Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 335:128–130

    Article  CAS  PubMed  Google Scholar 

  10. Kanavaros P, Lescs MC, Briere J, Divine M, Galateau F, Joab I, Bosq J, Farcet JP, Reyes F, Gaulard P (1993) Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus. Blood 81:2688–2695

    CAS  PubMed  Google Scholar 

  11. Richel DJ, Lepoutre JM, Kapsenberg JG, Ooms EC, Boom WR, Boucher CA, Kluin PM (1990) Epstein-Barr virus in a CD8-positive T-cell lymphoma. Am J Pathol 136:1093–1099

    CAS  PubMed  Google Scholar 

  12. Anagnostopoulos I, Hummel M, Finn T, Tiemann M, Korbjuhn P, Dimmler C, Gatter K, Dallenbach F, Parwaresch MR, Stein H (1992) Heterogeneous Epstein-Barr virus infection patterns in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood 80:1804–1812

    CAS  PubMed  Google Scholar 

  13. Su IJ, Hsieh HC, Lin KH, Uen WC, Kao CL, Chen CJ, Cheng AL, Kadin ME, Chen JY (1991) Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood 77:799–808

    CAS  PubMed  Google Scholar 

  14. Korbjuhn P, Anagnostopoulos I, Hummel M, Tiemann M, Dallenbach F, Parwaresch MR, Stein H (1993) Frequent latent Epstein-Barr virus infection of neoplastic T cells and bystander B cells in human immunodeficiency virus-negative European peripheral pleomorphic T-cell lymphomas. Blood 82:217–223

    CAS  PubMed  Google Scholar 

  15. Colby BM, Shaw JE, Elion GB, Pagano JS (1980) Effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus DNA replication. J Virol 34:560–568

    CAS  PubMed  Google Scholar 

  16. Pagano JS, Datta AK (1982) Perspectives on interactions of acyclovir with Epstein-Barr and other herpes viruses. Am J Med 73:18–26

    Article  CAS  PubMed  Google Scholar 

  17. Lin JC, Smith MC, Pagano JS (1984) Prolonged inhibitory effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine against replication of Epstein-Barr virus. J Virol 50:50–55

    CAS  PubMed  Google Scholar 

  18. Keever-Taylor CA, Behn B, Konings S, Orentas R, Davies B, Margolis D (2003) Suppression of EBV release from irradiated B lymphoblastoid cell-lines: superior activity of ganciclovir compared with acyclovir. Cytotherapy 5:323–335

    Article  CAS  PubMed  Google Scholar 

  19. Sauvageau G, Stocco R, Kasparian S, Menezes J (1990) Epstein-Barr virus receptor expression on human CD8+ (cytotoxic/suppressor) T lymphocytes. J Gen Virol 71(Pt 2):379–386

    Article  CAS  PubMed  Google Scholar 

  20. Fischer E, Delibrias C, Kazatchkine MD (1991) Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J Immunol 146:865–869

    CAS  PubMed  Google Scholar 

  21. Bressollette-Bodin C, Coste-Burel M, Besse B, Andre-Garnier E, Ferre V, Imbert-Marcille BM (2009) Cellular normalization of viral DNA loads on whole blood improves the clinical management of cytomegalovirus or Epstein Barr virus infections in the setting of pre-emptive therapy. J Med Virol 81:90–98

    Article  PubMed  Google Scholar 

  22. Niesters HG, van Esser J, Fries E, Wolthers KC, Cornelissen J, Osterhaus AD (2000) Development of a real-time quantitative assay for detection of Epstein-Barr virus. J Clin Microbiol 38:712–715

    CAS  PubMed  Google Scholar 

  23. Laurendeau I, Bahuau M, Vodovar N, Larramendy C, Olivi M, Bieche I, Vidaud M, Vidaud D (1999) TaqMan PCR-based gene dosage assay for predictive testing in individuals from a cancer family with INK4 locus haploinsufficiency. Clin Chem 45:982–986

    CAS  PubMed  Google Scholar 

  24. Kikuta H, Taguchi Y, Tomizawa K, Kojima K, Kawamura N, Ishizaka A, Sakiyama Y, Matsumoto S, Imai S, Kinoshita T (1988) Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333:455–457

    Article  CAS  PubMed  Google Scholar 

  25. Revoltella RP, Vigneti E, Fruscalzo A, Park M, Ragona G, Rocchi G, Calef E (1989) Epstein-Barr virus DNA sequences in precursor monocyte-macrophage cell lines established from the bone marrow of children with maturation defects of haematopoiesis. J Gen Virol 70(Pt 5):1203–1215

    Article  CAS  PubMed  Google Scholar 

  26. Kawaguchi H, Miyashita T, Herbst H, Niedobitek G, Asada M, Tsuchida M, Hanada R, Kinoshita A, Sakurai M, Kobayashi N et al (1993) Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J Clin Invest 92:1444–1450

    Article  CAS  PubMed  Google Scholar 

  27. Su IJ, Chen RL, Lin DT, Lin KS, Chen CC (1994) Epstein-Barr virus (EBV) infects T lymphocytes in childhood EBV-associated hemophagocytic syndrome in Taiwan. Am J Pathol 144:1219–1225

    CAS  PubMed  Google Scholar 

  28. Quintanilla-Martinez L, Kumar S, Fend F, Reyes E, Teruya-Feldstein J, Kingma DW, Sorbara L, Raffeld M, Straus SE, Jaffe ES (2000) Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood 96:443–451

    CAS  PubMed  Google Scholar 

  29. Kasahara Y, Yachie A, Takei K, Kanegane C, Okada K, Ohta K, Seki H, Igarashi N, Maruhashi K, Katayama K et al (2001) Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood 98:1882–1888

    Article  CAS  PubMed  Google Scholar 

  30. Ohga S, Nomura A, Takada H, Ihara K, Kawakami K, Yanai F, Takahata Y, Tanaka T, Kasuga N, Hara T (2001) Epstein-Barr virus (EBV) load and cytokine gene expression in activated T cells of chronic active EBV infection. J Infect Dis 183:1–7

    Article  CAS  PubMed  Google Scholar 

  31. Lin MT, Chang HM, Huang CJ, Chen WL, Lin CY, Chuang SS (2007) Massive expansion of EBV+ monoclonal T cells with CD5 down regulation in EBV-associated haemophagocytic lymphohistiocytosis. J Clin Pathol 60:101–103

    Article  CAS  PubMed  Google Scholar 

  32. Wada T, Kurokawa T, Toma T, Shibata F, Tone Y, Hashida Y, Kaya H, Yoshida T, Yachie A (2007) Immunophenotypic analysis of Epstein-Barr virus (EBV)-infected CD8(+) T cells in a patient with EBV-associated hemophagocytic lymphohistiocytosis. Eur J Haematol 79:72–75

    Article  CAS  PubMed  Google Scholar 

  33. Beutel K, Gross-Wieltsch U, Wiesel T, Stadt UZ, Janka G, Wagner HJ (2009) Infection of T lymphocytes in Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children of non-Asian origin. Pediatr Blood Cancer 53:184–190

    Article  PubMed  Google Scholar 

  34. Shevach E, Edelson R, Frank M, Lutzner M, Green I (1974) A human leukemia cell with both B and T cell surface receptors. Proc Natl Acad Sci USA 71:863–866

    Article  CAS  PubMed  Google Scholar 

  35. Shore A, Dosch HM, Gelfand EW (1979) Expression and modulation of C3 receptors during early T-cell ontogeny. Cell Immunol 45:157–166

    Article  CAS  PubMed  Google Scholar 

  36. Tsoukas CD, Lambris JD (1988) Expression of CR2/EBV receptors on human thymocytes detected by monoclonal antibodies. Eur J Immunol 18:1299–1302

    Article  CAS  PubMed  Google Scholar 

  37. Watry D, Hedrick JA, Siervo S, Rhodes G, Lamberti JJ, Lambris JD, Tsoukas CD (1991) Infection of human thymocytes by Epstein-Barr virus. J Exp Med 173:971–980

    Article  CAS  PubMed  Google Scholar 

  38. Paterson RL, Kelleher CA, Streib JE, Amankonah TD, Xu JW, Jones JF, Gelfand EW (1995) Activation of human thymocytes after infection by EBV. J Immunol 154:1440–1449

    CAS  PubMed  Google Scholar 

  39. Paterson RL, Kelleher C, Amankonah TD, Streib JE, Xu JW, Jones JF, Gelfand EW (1995) Model of Epstein-Barr virus infection of human thymocytes: expression of viral genome and impact on cellular receptor expression in the T-lymphoblastic cell line, HPB-ALL. Blood 85:456–464

    CAS  PubMed  Google Scholar 

  40. Guan M, Zhang RD, Wu B, Henderson EE (1996) Infection of primary CD4+ and CD8+ T lymphocytes by Epstein-Barr virus enhances human immunodeficiency virus expression. J Virol 70:7341–7346

    CAS  PubMed  Google Scholar 

  41. Kelleher CA, Dreyfus DH, Jones JF, Gelfand EW (1996) EBV infection of T cells: potential role in malignant transformation. Semin Cancer Biol 7:197–207

    Article  CAS  PubMed  Google Scholar 

  42. Ohtsubo H, Arima N, Tei C (1999) Epstein-Barr virus involvement in T-cell malignancy: significance in adult T-cell leukemia. Leuk Lymphoma 33:451–458

    CAS  PubMed  Google Scholar 

  43. Groux H, Cottrez F, Montpellier C, Quatannens B, Coll J, Stehelin D, Auriault C (1997) Isolation and characterization of transformed human T-cell lines infected by Epstein-Barr virus. Blood 89:4521–4530

    CAS  PubMed  Google Scholar 

  44. Guan M, Romano G, Henderson EE (1999) Epstein-Barr virus (EBV)-induced long-term proliferation of CD4+ lymphocytes leading to T lymphoblastoid cell lines carrying EBV. Anticancer Res 19:3007–3017

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by institutional funding from the Institut National de la Santé et de la Recherche Médicale (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Vié.

Additional information

M. Berthomé and G. Gallot contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthomé, M., Gallot, G., Vivien, R. et al. Viral DNA contamination is responsible for Epstein–Barr virus detection in cytotoxic T lymphocytes stimulated in vitro with Epstein–Barr virus B-lymphoblastoid cell line. Cancer Immunol Immunother 59, 1867–1875 (2010). https://doi.org/10.1007/s00262-010-0913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0913-2

Keywords

Navigation