Skip to main content
Log in

High salinity induced expression profiling of differentially expressed genes in shrimp (Penaeus monodon)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Four suppression subtractive hybridization (SSH) cDNA libraries were constructed to identify differentially expressed salinity stress responsive genes of black tiger shrimp, Penaeus monodon exposed to high (55 ppt) salinity conditions. One each of the forward and reverse SSH cDNA libraries were developed from the gill and gut tissues of shrimp and clones having inserts larger than 300 bp were unidirectionally sequenced. Based on the sequence homology search, the identified genes were categorized for their putative functions related to a wide range of biological roles, such as nucleic acid regulation and replication, immune response, energy and metabolism, signal transduction, cellular process, structural and membrane proteins, stress and osmoregulation. Gene expression levels in response to high salinity conditions at 2 weeks post salinity stress for some of the differentially expressed genes (Na+/K+-ATPase α-subunit, glutathione peroxidase, intracellular fatty acid binding protein, elongation factor 2, 14-3-3 like protein, penaeidin, translationally controlled tumor protein, transglutaminase and serine proteinase inhibitor B3) identified from SSH cDNA libraries were analysed by real-time RT-PCR. The highest gene expression levels was observed for Na+/K+-ATPase α-subunit in gill tissues (15.23-folds) and antennal glands (12.01-folds) and intracellular fatty acid binding protein in gut tissues (14.05-folds) respectively. The differential and significant levels of gene expression indicate the functional role of these genes in shrimp salinity stress adaptive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferraris RP, Parado-Estepa ED, DeJesus EG, Ladja JM (1987) Osmotic and chloride regulation in the haemolymph of the tiger prawn Penaeus monodon during molting in various salinities. Mar Biol 95:377–385

    Article  Google Scholar 

  2. Jiann-Chu C, Jin-Nien L, Chung-Tin C, Min-Nan L (1996) Survival, growth and intermolt period of juvenile Penaeus chinensis (Osbeck) reared at different combinations of salinity and temperature. J Exp Mar Biol Ecol 204:169–178

    Article  Google Scholar 

  3. Sang HM, Fotedar R (2004) Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn (Penaeus latisulcatus Kishniouye, 1896) reared at different salinities. Aquaculture 234:601–614

    Article  Google Scholar 

  4. Kumlu M, Eroldogan OT, Aktas M (1999) The effect of salinity on larval growth, survival and development of Penaeus semisulcatus (Decapoda: Penaeidae). Isr J Aquac-Bamidgeh 51:114–121

    Google Scholar 

  5. Silva E, Calazans N, Soares M, Soares R, Peixoto S (2010) Effect of salinity on survival, growth, food consumption and haemolymph osmolality of the pink shrimp Farfantepenaeus subtilis (Pérez-Farfante, 1967). Aquaculture 306:352–356

    Article  CAS  Google Scholar 

  6. Ponce-Palafox J, Martínez-Palacios CA, Ross LG (1997) The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 157:107–115

    Article  Google Scholar 

  7. Menz A, Blake BF (1980) Experiments on the growth of Penaeus vannamei Boone. J Exp Mar Biol Ecol 48:99–111

    Article  Google Scholar 

  8. Roy LA, Davis DA, Saoud IP, Boyd CA, Pine HJ et al (2010) Shrimp culture in inland low salinity waters. Rev Aquac 2:191–208

    Article  Google Scholar 

  9. Staples DJ, Heales DS (1991) Temperature and salinity optima for growth and survival of juvenile banana prawns Penaeus merguiensis. J Exp Mar Biol Ecol 154:251–274

    Article  Google Scholar 

  10. Chen JC, Lin MN, Ting YY, Lin JN (1995) Survival, haemolymph osmolality and tissue water of Penaeus chinensis juveniles acclimated to different salinity and temperature levels. Comp Biochem Physiol A Physiol 110:253–258

    Article  Google Scholar 

  11. Perazzolo LM, Gargioni R, Ogliari P, Barracco MA (2002) Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture 214:19–33

    Article  Google Scholar 

  12. Lucu Č, Towle DW (2003) Na(+)+K(+)-ATPase in gills of aquatic crustacea. Comp Biochem Physiol A Physiol 135:195–214

    Article  Google Scholar 

  13. Henry RP (1988) Multiple functions of carbonic anhydrase in the crustacean gill. J Exp Zool 248:19–24

    Article  CAS  Google Scholar 

  14. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  15. Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Mantel LH (ed) The biology of Crustacea: 5. Internal Anatomy and physiological regulation. The biology of Crustacea, Academic Press, New York, pp 53–161

    Google Scholar 

  16. de la Vega E, Hall MR, Wilson KJ, Reverter A, Woods RG et al (2007) Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiol Genomics 31:126–138

    Article  PubMed  Google Scholar 

  17. Gao W, Tan B, Mai K, Chi S, Liu H et al (2012) Profiling of differentially expressed genes in hepatopancreas of white shrimp (Litopenaeus vannamei) exposed to long-term low salinity stress. Aquaculture 364–365:186–191

    Article  Google Scholar 

  18. Shekhar MS, Kiruthika J, Ponniah AG (2013) Identification and expression analysis of differentially expressed genes from shrimp (Penaeus monodon) in response to low salinity stress. Fish Shellfish Immunol 35:1957–1968

    Article  CAS  PubMed  Google Scholar 

  19. Romano N, Zeng C (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334:12–23

    Article  Google Scholar 

  20. Ye L, Jiang S, Zhu X, Yang Q, Wen W et al (2009) Effects of salinity on growth and energy budget of juvenile Penaeus monodon. Aquaculture 290:140–144

    Article  CAS  Google Scholar 

  21. Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J et al (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  CAS  PubMed  Google Scholar 

  22. Destoumieux D, Muñoz M, Cosseau C, Rodriguez J, Bulet P et al (2000) Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 113:461–469

    CAS  PubMed  Google Scholar 

  23. Loc NH, MacRae TH, Musa N, Abdullah MDDB, Wahid MEA et al (2013) Non-lethal heat shock increased HSP70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp. PLoS ONE 8:e73199

    Article  PubMed Central  PubMed  Google Scholar 

  24. Muñoz M, Vandenbulcke F, Saulnier D, Bachère E (2002) Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur J Biochem 269:2678–2689

    Article  PubMed  Google Scholar 

  25. Maiorino FM, Brigelius-Flohé R, Aumann KD, Roveri A, Schomburg D et al (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53

    Article  PubMed  Google Scholar 

  26. Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radical Biol Med 27:951–965

    Article  Google Scholar 

  27. Thompson JL, Thomas PM, Schuller KA (2006) Purification and properties of a glutathione peroxidase from Southern bluefin tuna (Thunnus maccoyii) liver. Comp Biochem Physiol B 144:86–93

    Article  PubMed  Google Scholar 

  28. Wu LT, Chu KH (2010) Characterization of an ovary-specific glutathione peroxidase from the shrimp Metapenaeus ensis and its role in crustacean reproduction. Comp Biochem Physiol B 155:26–33

    Article  PubMed  Google Scholar 

  29. Liu CH, Tseng MC, Cheng W (2007) Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol 23:34–45

    Article  PubMed  Google Scholar 

  30. Ren Q, Sun RR, Zhao XF, Wang JX (2009) A selenium-dependent glutathione peroxidase (Se-GPx) and two glutathione S-transferases (GSTs) from Chinese shrimp (Fenneropenaeus chinensis). Comp Biochem Physiol C 149:613–623

    Google Scholar 

  31. Paital B, Chainy GBN (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C 151:142–151

    Google Scholar 

  32. Graidist P, Fujise K, Wanna W, Sritunyalucksana K, Phongdara A (2006) Establishing a role for shrimp fortilin in preventing cell death. Aquaculture 255:157–164

    Article  CAS  Google Scholar 

  33. Bangrak P, Graidist P, Chotigeat W, Phongdara A (2004) Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene from Penaeus monodon shrimp. J Biotechnol 108:219–226

    Article  CAS  PubMed  Google Scholar 

  34. Tonganunt M, Nupan B, Saengsakda M, Suklour S, Wanna W et al (2008) The role of Pm–fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25:633–637

    Article  CAS  PubMed  Google Scholar 

  35. Jung J, Kim M, Kim MJ, Kim J, Moon J et al (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na, K-ATPase α subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279:49868–49875

    Article  CAS  PubMed  Google Scholar 

  36. Song YL, Yu CI, Lien TW, Huang CC, Lin MN (2003) Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immunol 14:317–331

    Article  CAS  PubMed  Google Scholar 

  37. Han-Ching Wang KC, Tseng CW, Lin HY, Chen I, Chen YH et al (2010) RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Dev Comp Immunol 34:49–58

    Article  PubMed  Google Scholar 

  38. Lin X, Söderhäll K, Söderhäll I (2008) Transglutaminase activity in the hematopoietic tissue of a crustacean, Pacifastacus leniusculus, importance in hemocyte homeostasis. BMC Immunol 9:58

    Article  PubMed Central  PubMed  Google Scholar 

  39. Liu YC, Li FH, Wang B, Dong B, Zhang QL et al (2007) A transglutaminase from Chinese shrimp (Fenneropenaeus chinensis), full-length cDNA cloning, tissue localization and expression profile after challenge. Fish Shellfish Immunol 22:576–588

    Article  CAS  PubMed  Google Scholar 

  40. Yeh MS, Liu CH, Hung CW, Cheng W (2009) cDNA cloning, identification, tissue localisation, and transcription profile of a transglutaminase from white shrimp, Litopenaeus vannamei, after infection by Vibrio alginolyticus. Fish Shellfish Immunol 27:748–756

    Article  CAS  PubMed  Google Scholar 

  41. Fagutao FF, Maningas MBB, Kondo H, Aoki T, Hirono I (2012) Transglutaminase regulates immune-related genes in shrimp. Fish Shellfish Immunol 32:711–715

    Article  CAS  PubMed  Google Scholar 

  42. Nozawa H, Mamegoshi SI, Seki N (1999) Effect of neutral salts on activity and stability of transglutaminase from scallop adductor muscle. Comp Biochem Physiol B 124:181–186

    Article  Google Scholar 

  43. Kiruthika J, Rajesh S, Kumar VK, Gopikrishna G, Khan IH et al (2013) Effect of Salinity Stress on the Biochemical and Nutritional Parameters of Tiger Shrimp Penaeus monodon. Fish Technol 50:294–300

    CAS  Google Scholar 

  44. Havird JC, Henry RP, Wilson AE (2013) Altered expression of Na+/K+–ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta-analysis of 59 quantitative PCR studies over 10 years. Comp Biochem Physiol D 8:131–140

    CAS  Google Scholar 

  45. Sun H, Zhang L, Ren C, Chen C, Fan S et al (2011) The expression of Na, K-ATPase in Litopenaeus vannamei under salinity stress. Mar Biol Res 7:623–628

    Article  Google Scholar 

  46. Wang L, Wang WN, Liu Y, Cai DX, Li JZ et al (2012) Two types of ATPases from the Pacific white shrimp, Litopenaeus vannamei in response to environmental stress. Mol Biol Rep 39:6427–6438

    Article  CAS  PubMed  Google Scholar 

  47. Buranajitpirom D, Asuvapongpatana S, Weerachatyanukul W, Wongprasert K, Namwong W et al (2010) Adaptation of the black tiger shrimp, Penaeus monodon, to different salinities through an excretory function of the antennal gland. Cell Tissue Res 340:481–489

    Article  CAS  PubMed  Google Scholar 

  48. Huong DTT, Jasmani S, Jayasankar V, Wilder M (2010) Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. Aquaculture 304:88–94

    Article  CAS  Google Scholar 

  49. Weissbach H, Ochoa S (1976) Soluble factors required for eukaryotic protein synthesis. Annu Rev Biochem 45:191–216

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Liu Y, Wang WN, Mai WJ, Xin Y et al (2011) Molecular characterization and expression analysis of elongation factors 1A and 2 from the Pacific white shrimp, Litopenaeus vannamei. Mol Biol Rep 38:2167–2178

    Article  CAS  PubMed  Google Scholar 

  51. Qiu L, Jiang S, Zhou F, Zhang D, Huang J et al (2008) Molecular cloning of the black tiger shrimp (Penaeus monodon) elongation factor 2 (EF-2): sequence analysis and its expression on the ovarian maturation stage. Mol Biol Rep 35:431–438

    Article  CAS  PubMed  Google Scholar 

  52. Gillen CM, Gao Y, Niehaus-Sauter MM, Wylde MR, Wheatly MG (2008) Elongation factor 1Bγ (eEF1Bγ) expression during the molting cycle and cold acclimation in the crayfish Procambarus clarkii. Comp Biochem Physiol B 150:170–176

    Article  PubMed  Google Scholar 

  53. Homvises T, Tassanakajon A, Somboonwiwat K (2010) Penaeus monodon SERPIN, PmSERPIN6, is implicated in the shrimp innate immunity. Fish Shellfish Immunol 29:890–898

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Li F, Wang B, Dong B, Zhang X et al (2009) A serpin from Chinese shrimp Fenneropenaeus chinensis is responsive to bacteria and WSSV challenge. Fish Shellfish Immunol 26:345–351

    Article  PubMed  Google Scholar 

  55. Somboonwiwat K, Supungul P, Rimphanitchayakit V, Aoki T, Hirono I et al (2006) Differentially expressed genes in hemocytes of Vibrio harveyi-challenged shrimp Penaeus monodon. J Biochem Mol Biol 39:26–36

    Article  CAS  PubMed  Google Scholar 

  56. Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16:162–172

    Article  CAS  PubMed  Google Scholar 

  57. Baunsgaard L, Fuglsang AT, Jahn T, Korthout HA, de Boer AH et al (1998) The 14-3-3 proteins associate with the plant plasma membrane H(+)-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13:661–671

    Article  CAS  PubMed  Google Scholar 

  58. Jayasundara N, Towle DW, Weihrauch D, Spanings-Pierrot C (2007) Gill-specific transcriptional regulation of Na +/K + -ATPase α-subunit in the euryhaline shore crab Pachygrapsus marmoratus: sequence variants and promoter structure. J Exp Biol 210:2070–2081

    Article  CAS  PubMed  Google Scholar 

  59. Wanna W, Thipwong J, Mahakaew W, Phongdara A (2012) Identification and expression analysis of two splice variants of the 14-3-3 epsilon from Litopenaeus vannamei during WSSV infections. Mol Biol Rep 39:5487–5493

    Article  CAS  PubMed  Google Scholar 

  60. Kaeodee M, Pongsomboon S, Tassanakajon A (2011) Expression analysis and response of Penaeus monodon 14-3-3 genes to salinity stress. Comp Biochem Physiol B 159:244–251

    Article  PubMed  Google Scholar 

  61. Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59:1096–1116

    Article  CAS  PubMed  Google Scholar 

  62. Zhao ZY, Yin ZX, Weng SP, Guan HJ, Li SD et al (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunol 22:520–534

    Article  CAS  PubMed  Google Scholar 

  63. Zeng Y, Lu CP (2009) Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. Fish Shellfish Immunol 26:646–650

    Article  CAS  PubMed  Google Scholar 

  64. Ren Q, Du ZQ, Zhao XF, Wang JX (2009) An acyl-CoA binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 27:739–747

    Article  CAS  PubMed  Google Scholar 

  65. Söderhäll I, Tangprasittipap A, Liu H, Sritunyalucksana K, Prasertsan P et al (2006) Characterization of a hemocyte intracellular fatty acid-binding protein from crayfish (Pacifastacus leniusculus) and shrimp (Penaeus monodon). FEBS J 273:2902–2912

    Article  PubMed  Google Scholar 

  66. Ordway RW, Singer JJ, Walsh JV (1991) Direct regulation of ion channels by fatty acids. Trends Neurosci 14:96–100

    Article  CAS  PubMed  Google Scholar 

  67. Rajesh S, Kiruthika J, Ponniah AG, Shekhar MS (2012) Identification, cloning and expression analysis of Catechol-O-methyltransferase (COMT) gene from shrimp, Penaeus monodon and its relevance to salinity stress. Fish Shellfish Immunol 32:693–699

    Article  CAS  PubMed  Google Scholar 

  68. Kiruthika J, Rajesh S, Ponniah AG, Shekhar MS (2013) Molecular cloning and characterization of Acyl CoA binding protein (ACBP) gene from shrimp, Penaeus monodon exposed to salinity stress. Dev Comp Immunol 40:78–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank NAIP (ICAR) for the financial support provided under the NAIP project “Bioprospecting of genes and allele mining for abiotic stress tolerance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, M.S., Kiruthika, J., Rajesh, S. et al. High salinity induced expression profiling of differentially expressed genes in shrimp (Penaeus monodon). Mol Biol Rep 41, 6275–6289 (2014). https://doi.org/10.1007/s11033-014-3510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3510-1

Keywords

Navigation