Skip to main content
Log in

QTL identification and epistatic effect analysis of seed size- and weight-related traits in Zea mays L

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Seed size and weight are two seed physical traits showing high correlation to seed quality and grain yield. Here, we employed a maize F2:3 population developed from a cross between inbred line 220 (herein named L220, small seed) and PH4CV (large seed) to identify loci that control the seed size traits of kernel length (KL), kernel weight (KW), kernel thickness (KT), projected area (PA), and kernel volume (KV) and the seed weight trait of hundred-kernel weight (HKW). A total of 20 QTL were identified with 2–5 for a trait to explain 3.97–13.77% phenotypic variances. Among them, 15 QTL were colocated within the following six chromosomal regions: chromosome 1 (Chr. 1), 195.2–195.8 Mb; Chr. 2, 7.6–10.6 Mb; Chr. 3, 8.9–9.6 Mb; Chr. 4, 188.3–193.2 Mb; Chr. 8, 18.8–24.4 Mb; and Chr. 9, 13.9–18.3 Mb. After collecting 1341 QTL related to seed physical traits from this work and previous publications, meta-QTL analysis revealed 8 mQTL, with 6 located in the abovementioned regions, suggesting high consistency of QTL localization across populations. Additionally, 10 pairs of epistatically interacting loci were identified for the 6 seed physical traits. Six QTL were found to be located within these interacting loci. Taken together, these results provide a foundation for further QTL fine mapping of the 8 mQTL and for the molecular-assisted breeding of maize with large seed size and weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Chr:

Chromosome

KL:

Kernel length

KW:

Kernel width

KT:

Kernel thickness

PA:

Projected area

KV:

Kernel volume

HKW:

Hundred-kernel weight

TL:

Total length

RL:

Root length

SL:

Shoot length

QTL:

Quantitative trait locus

References

  • Ambika S, Manonmani V, Somasundaram G (2014) Review on effect of seed size on seedling vigour and seed yield. Res J Seed Sci 7:31–38

    Article  Google Scholar 

  • Blummel M, Grings E, Erenstein O (2013) Potential for dual-purpose maize varieties to meet changing maize demands: synthesis. Field Crop Res 153:107–112

    Article  Google Scholar 

  • Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195

    Article  PubMed  Google Scholar 

  • Chen J, Zhang L, Liu S, Li Z, Huang R, Li Y, Cheng H, Li X, Zhou B, Wu S, Chen W, Wu J, Ding J (2016a) The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One 11:e0153428

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Li C, Li Y, Song Y, Zhang D, Wang T, Li Y, Shi Y (2016b) Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize. Mol Breed 36:134

    Article  Google Scholar 

  • Chen L, Li Y, Li C, Wu X, Qin W, Li X, Jiao F, Zhang X, Zhang D, Shi Y, Song Y, Li Y, Wang T (2016c) Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol 16:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, An Y, Li Y, Li C, Shi Y, Song Y, Zhang D, Wang T, Li Y (2017) Candidate loci for yield-related traits in maize revealed by a combination of MetaQTL analaysis and reginal association mapping. Front Plant Sci 8:2190

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang X, Lan H, Huang J, Wang J, Zhang H (2015) The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biol 15:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2012) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    Article  PubMed  Google Scholar 

  • International rules for seed test. International seed testing association (ISTA). Zurich, Switzerland (Edition 2018). Chapter 6: pp. 1–25

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA- glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Ge M, Zhao H, Zhang T (2015) Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. PLoS One 10:e0124779

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Li X, Wang Y, Mi J, Xing F, Zhang D, Dong Q, Li X, Xiao J, Zhang Q, Ouyang Y (2017) Three representative inter and intra‐subspecific crosses reveal the genetic architecture of reproductive isolation in rice. Plant J 92:349–362

    Article  CAS  PubMed  Google Scholar 

  • Li N, Li Y (2014) Ubiquitin-mediated control of seed size in plants. Front Plant Sci 5:332

    PubMed  PubMed Central  Google Scholar 

  • Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32

    Article  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li Y, Sun B, Peng B, Liu C, Liu Z, Yang Z, Li Q, Tan W, Zhang Y, Wang D, Shi Y, Song Y, Wang T, Li Y (2013) Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193:303–316

    Article  CAS  Google Scholar 

  • Li X, Zhang Y, Hou M, Sun F, Shen Y, Xiu Z, Wang X, Chen Z, Sun S, Small I, Tan BC (2014) Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J 79:797–809

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li Y, Chen L, Wu X, Qin W, Song Y, Zhang D, Wang T, Li Y, Shi Y (2016) Fine mapping of qkw7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica 210:221–232

    Article  CAS  Google Scholar 

  • Li X, Gu W, Sun S, Chen Z, Chen J, Song W, Zhao H, Lai J (2018a) Defective kernel 39 encodes a PPR protein required for seed development in maize. J Integr Plant Biol 60:45–64

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang G, Fu J, Li L, Jia G, Ren L, Lubberstedt T, Wang G, Wang J, Gu R (2018b) QTL mapping in three connected populations reveals a set of consensus genomic regions for low temperature germination ability in Zea mays L. Front Plant Sci 9:1–11

    Article  Google Scholar 

  • Lima M, de Souza C, Bento D, de Souza A, Carlini-Garcia L (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Deng M, Guo H, Raihan S, Luo J, Xu Y, Dong X, Yan J (2015) Maize orthologs of rice GS5 and their trans-regulator are associated with kernel development. J Integr Plant Biol 57:943–953

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017a) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants 3:17043

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Huang J, Guo H et al (2017b) The conserved and unique genetic architecture of kernel size and weight in maize and Rice. Plant Physiol 175:774–785

    PubMed  PubMed Central  Google Scholar 

  • Lv B, Guo Z, Liang J (2008) Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Sci China C Life Sci 51:863–871

    Article  Google Scholar 

  • Ma L, Guan Z, Zhang Z, Zhang X, Zhang Y, Zou C, Peng H, Pan G, Lee M, Shen Y, Lubberstedt T (2018) Identification of quantitative trait loci for leaf-related traits in an IBM Syn10 DH maize population across three environments. Plant Breed 137:127–138

    Article  CAS  Google Scholar 

  • Mather D, Jinks J (1982) Biometrical genetics. The study of continuous variation, 3rd edn. Chapman & Hall, New York

    Book  Google Scholar 

  • McCleary BV, Gibson TS, Solah V, Mugford DC (1994) Total starch measurement in cereal products: interlaboratory evaluation of a rapid enzymic test procedure. Cereal Chem 71:501–505

    CAS  Google Scholar 

  • Peksen EA, Peksen HB, Gulumser A (2004) Some seed traits and their relationship to seed germination and field emergence in pea (Pisum sativum L.). J Agron 3:243–246

    Article  Google Scholar 

  • Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320

    Article  PubMed  Google Scholar 

  • Peng Y, Chen L, Lu Y, Ma W, Tong Y, Li Y (2013a) DAR2 acts as an important node connecting cytokinin, auxin, SHY2 and PLT1/2 in root meristem size control. Plant Signal Behav 8:e24226

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Ma W, Chen L, Yang L, Li S, Zhao H, Zhao Y, Jin W, Li N, Bevan MW, Li X, Tong Y, Li Y (2013b) Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis. Plant Physiol 161:1542–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips PC (2008) Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Li Y, Wu X, Li X, Chen L, Shi Y, Song Y, Zhang D, Wang T, Li Y (2016) Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed 36(8)

  • R Core Team (2016) A language and environment for statistical computing, Vienna, Austria

  • Raihan MS, Liu J, Huang J, Guo H, Pan Q, Yan J (2016) Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theor Appl Genet 129:1465–1477

    Article  CAS  PubMed  Google Scholar 

  • Rastegar Z, Kandi M (2011) The effect of salinity and seed size on seed reserve untilization and seedling growth of soybean (Glycin max). Intl J Agron Plant Prod 2:1–4

    Google Scholar 

  • Revilla P, Butron A, Malvar RA, Ordas A (1999) Relationships among kernel weight, early vigor, and growth in maize. Crop Sci 39:654–658

    Article  Google Scholar 

  • Semagn K, Beyene Y, Warburton ML, Tarekegne A, Mugo S, Meisel B, Sehabiague B, Prasanna BM (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics 14:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Singh AP, Singh N, Singh AK, Singh S, Singh S, Singh A, Singh SV (2005) Studies on seed quality parameters along with yield attributing traits in rice (Oryza sativa L.). Intl J Chem Stud 6(4):3182–3185

    Google Scholar 

  • Snider JL, Collins GD, Whitaker J, Chapman KD, Horn P (2016) The impact of seed size and chemical composition on seedling vigor, yield, and fiber quality of cotton in five production environments. Field Crop Res 193:186–195

    Article  Google Scholar 

  • Song X, Huang W, Shi M, Zhu M, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Stich B, Gebhardt C (2010) Detection of epistatic interactions in association mapping populations: an example from tetraploid potato. Heredity 107:537–547

    Article  Google Scholar 

  • Stich B, Yu J, Melchinger AE, Piepho HP, Utz HF, Maurer HP, Buckler ES (2007) Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 176:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015a) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–955

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yan L, Wan L, Huai D, Kang Y, Shi L, Jiang H, Lei Y, Liao B (2019) Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics 20:51

  • Wen K, Xie Z, Yang L, Sun B, Wang J, Sun Q (2015) Computer vision technology determines optimal physical parameters for sorting JinDan 73 maize seeds. Seed Sci Technol 43:62–70

    Article  Google Scholar 

  • Wu W, Liu X, Wang M, Meyer RS, Luo X, Ndjiondjop MN, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z (2017) A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants 3:17064

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Zhan Y, Sun Q, Xu L, Lian M, Zhao X, Han Y, Li W (2018) Identification of quantitative trait loci underlying soybean (Glycine max [L.] Merr.) seed weight including main, epistatic and QTL 3 environment effects in different regions of Northeast China. Plant Breed 137:194–202

    Article  CAS  Google Scholar 

  • Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q (2015) Differential expression of GS5 regulates grain size in rice. J Exp Bot 66:2611–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman RM, Li J, Zhang H, Li Z (2018) Alternative splicing of oslg3b controls grain length and yield in japonica rice. Plant Biotechnol J 16:1667–1678

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z, Weng J (2017) Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet 130:1011–1029

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The financial support was received from National Key R&D Program of China (2017YFD0102001-3, 2018YFD0100900-3), National Natural Science Foundation of China (31701437, 31771891), and the China Agriculture Research System (CARS-02-10).

Author information

Authors and Affiliations

Authors

Contributions

Li Li, R. Gu, and J. Wang designed the study. X. Li and Lulu Li performed the genotypic and phenotypic analysis, respectively. Li Li drafted the manuscript with the help of J. Schnable. R. Gu revised the manuscript.

Corresponding authors

Correspondence to Riliang Gu or Jianhua Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, X., Li, L. et al. QTL identification and epistatic effect analysis of seed size- and weight-related traits in Zea mays L. Mol Breeding 39, 67 (2019). https://doi.org/10.1007/s11032-019-0981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-0981-8

Keywords

Navigation