Skip to main content
Log in

Mutations in the mitochondrial orf108 render Moricandia arvensis restorer ineffective in restoring male fertility to Brassica oxyrrhina-based cytoplasmic male sterile line of B. juncea

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We reported earlier an evolutionarily conserved mitochondrial orf108 causing cytoplasmic male sterility (CMS) in four alloplasmic lines of Brassica juncea. B. oxyrrhina also carries orf108, but male sterility of B. oxyrrhina-based B. juncea CMS lines is not restored by the Moricandia arvensis restorer that rescues other orf108-containing B. juncea CMS lines. To understand this discrepancy, we characterized B. oxyrrhina-based B. juncea CMS line (oxy-cms) to identify the mitochondrial gene associated with male sterility. Examination of expression patterns of 26 mitochondrial genes in CMS and male fertile (oxy-camp, i.e. amphidiploid B. oxyrrhina × B. rapa, and euplasmic B. juncea) lines revealed polymorphic transcript patterns for six genes: atp1, atp4, ccmfn2, cox3, nad4L and orf108. Detailed analysis showed that orf108 is linked and co-transcribed with atp1. Comparison of orf108-atp1 transcripts in male sterile and male fertile flowers revealed that B. oxyrrhina restorer cleaves orf108-atp1 at a different location within the orf108 coding region as compared with the M. arvensis restorer. A total of eleven SNPs were detected within the orf108 coding region. One of these SNPs was located at the site where M. arvensis restorer processes the orf108-atp1 transcript suggesting that it could be critical for cleavage of orf108-atp1 transcript by the M. arvensis restorer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad AR, Mehrtens BJ, Mackenzie SA (1995) Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7:271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashutosh, Kumar P, Sharma PC, Prakash S, Bhat SR (2008) A novel orf108 co-transcribed with atpA gene is associated with cytoplasm male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm. Plant Cell Physiol 49:284–289. doi:10.1093/pcp/pcm182

    Article  CAS  PubMed  Google Scholar 

  • Budar F, Touzet P, Paepe RD (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606. doi:10.1146/annurev-arplant-050213-040119

    Article  CAS  PubMed  Google Scholar 

  • Dill CL, Wise RP, Schnable PS (1997) Rf8 and Rf ∗ mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics 147:1367–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forner J, Weber B, Thuss S, Wildum S, Binder S (2007) Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Res 35:3676–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii K, Toriyama S (2008) Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol 49:1484–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobron N, Waszczak C, Simon M, Hiard S, Biovin S, Charif D, Ducamp A, Wenes E, Budar F (2013) A cryptic cytoplasmic male sterility unveils a possible gynodioecious past for Arabidopsis thaliana. PLoS ONE 8(4):e62450. doi:10.1371/journal.pone.0062450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MW, Hanic-Joyce PJ, Covello PS (1992) Transcription, processing and editing in plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 43:145–175

    Article  CAS  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male sterile Brassica cybrids. Mol Gen Genet 243:540–547

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi M, Koizuka N, Fujimoto H, Sakai T, Imamura J (1999) Identification and expression of the Kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138. Plant Mol Biol 39:183–188

    Article  CAS  PubMed  Google Scholar 

  • Kirti PB, Narasimhulu SB, Mohapatra T, Prakash S, Chopra VL (1993) Correction of chlorophyll deficiency in alloplasmic male sterile Brassica juncea through recombination between chloroplast genomes. Genet Res Camb 62:11–14

    Article  CAS  Google Scholar 

  • Kirti PB, Mohapatra T, Khanna H, Prakash S, Chopra VL (1995) Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep 14:593–597

    Article  CAS  PubMed  Google Scholar 

  • Kohler RH, Horn R, Lossl A, Zetsche K (1991) Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet 227:369–376

    Article  CAS  PubMed  Google Scholar 

  • Kruft V, Eubel H, Jänsch L, Werhahn W, Braun H (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710. doi:10.1104/pp.010474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo T, Kitazaki K, Matsunaga M, Kagami H, Mikami T (2011) Male sterility-inducing mitochondrial genomes: how do they differ? Crit Rev Plant Sci 30:378–400. doi:10.1080/07352689.2011.587727

    Article  CAS  Google Scholar 

  • Kumar P, Vasupalli N, Srinivasan R, Bhat SR (2012) An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana. J Exp Bot 63:2921–2932. doi:10.1093/jxb/err459

    Article  CAS  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li X, Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu YG (2013) A detrimental mitochondrial–nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577. doi:10.1038/ng.2570

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Chopra VL (1988) Synthesis of alloplasmic Brassica campestris as a new source of cytoplasmic male sterility. Plant Breed 101:253–255

    Article  Google Scholar 

  • Prakash S, Chopra VL (1990) Male sterility caused by cytoplasm of Brassica oxyrrhina in B. campestris and B. juncea. Theor Appl Genet 79:285–287

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 3:1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y-G (2006) Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is reversed by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassiceae. Breed Sci 64:38–47. doi:10.1270/jsbbs.64.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contribution

VN conducted most of the experiments; SKS and VK assisted in transcript mapping; AW assisted in preparation of Southern blots; SRB generated the materials; SRB, KRSS and PK planned the experiment; SRB, VN and PK wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shripad Ramachandra Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 112 kb)

Suppl. Fig. 1

Alignment of protein sequences of atp1 of B. oxyrrhina and M. arvensis. Identical alignments are boxed. Upward arrow indicates the amino acids have same physicochemical properties (JPEG 123 kb)

Suppl. Fig. 2

Alignment of ORF108 of B. oxyrrhina and M. arvensis. Identical alignments are boxed (JPEG 26 kb)

Suppl. Fig. 3

Verification of co-transcription of atp4 and nad4L in B. juncea (1), oxy-cms (2) and oxy-camp (3). Gel photograph of amplicons obtained after RT-PCR and PCR with the primers atp4 F and nad4L R. Amplicon size is indicated in kb (JPEG 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naresh, V., Singh, S.K., Watts, A. et al. Mutations in the mitochondrial orf108 render Moricandia arvensis restorer ineffective in restoring male fertility to Brassica oxyrrhina-based cytoplasmic male sterile line of B. juncea . Mol Breeding 36, 67 (2016). https://doi.org/10.1007/s11032-016-0489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0489-4

Keywords

Navigation