Skip to main content
Log in

Genome-wide analysis of mRNA and lncRNA expression and mitochondrial genome sequencing provide insights into the mechanisms underlying a novel cytoplasmic male sterility system, BVRC-CMS96, in Brassicarapa

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Characterization of a novel and valuable CMS system in Brassicarapa.

Abstract

Cytoplasmic male sterility (CMS) is extensively used to produce F1 hybrid seeds in a variety of crops. However, it has not been successfully used in Chinese cabbage (Brassicarapa L. ssp. pekinensis) because of degeneration or temperature sensitivity. Here, we characterize a novel CMS system, BVRC-CMS96, which originated in B.napus cybrid obtained from INRAE, France and transferred by us to B.rapa. Floral morphology and agronomic characteristics indicate that BVRC-CMS96 plants are 100% male sterile and show no degeneration in the BC7 generation, confirming its suitability for commercial use. We also sequenced the BVRC-CMS96 and maintainer line 18BCM mitochondrial genomes. Genomic analyses showed the presence of syntenic blocks and distinct structures between BVRC-CMS96 and 18BCM and the other known CMS systems. We found that BVRC-CMS96 has one orf222 from ‘Nap’-type CMS and two copies of orf138 from ‘Ogu’-type CMS. We analyzed expression of orf222, orf138, orf261b, and the mitochondrial energy genes (atp6, atp9, and cox1) in flower bud developmental stages S1-S5 and in four floral organs. orf138 and orf222 were both highly expressed in S4, S5-stage buds, calyx, and the stamen. RNA-seq identified differentially expressed mRNAs and lncRNAs (long non-coding RNAs) that were significantly enriched in pollen wall assembly, pollen development, and pollen coat. Our findings suggest that an energy supply disorder caused by orf222/orf138/orf261b may inhibit a series of nuclear pollen development-related genes. Our study shows that BVRC-CMS96 is a valuable CMS system, and our detailed molecular analysis will facilitate its application in Chinese cabbage breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Sequencing data has been deposited in the NCBI Sequence Read Archive under the Accession Number PRJNA595648.

References

  • Allen J, Fauron C, Minx P, Roark L, Oddiraju S, Lin G, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton S, Newton K (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local aligment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alverson A, Rice D, Dickinson S, Barry K, Palmer J (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23:2499–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An H, Yang Z, Yi B, Wen J, Shen J, Tu J, Ma C, Fu T (2014) Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genomics 15:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antipov D, Korobeynikov A, McLean J, Pevzner P (2015) HYBRIDSPADES: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:btv688

    Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsisthaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116

    Article  CAS  PubMed  Google Scholar 

  • Bannerot H, Boulidard L, Chupeau Y (1977) Unexpected difficulties met with the radish cytoplasm in Brassicaoleracea. Eucarpia Cruciferae Newslett 2:16

    Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance M-C, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. MGG 235:340–348

    CAS  PubMed  Google Scholar 

  • Bussotti G, Raineri E, Erb I, Zytnicki M, Wilm A, Beaudoing E, Bucher P, Notredame C (2011) BlastR-fast and accurate database searches for non-coding RNAs. Nucleic Acids Res 39:6886–6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Guan R, Du T, Zhang H, Xing H (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassicanapus L. PLoS ONE 6:e17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Jian Y (2008) Cabbage cytoplasmic male sterile line breeding and its application in hybrid seed production. Acta Horticult 771:89–95

    Article  Google Scholar 

  • Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma D (2005) Callosesynthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J Cell Mol Biol 42:315–328

    Article  CAS  Google Scholar 

  • Duan N, Bai J, Xie K, Wang J, Wang X (2019) De novo and comparative transcriptome analysis of genetic male sterile and fertile lines in radish (Raphanussativus). J Horticult Sci Biotechnol 95:1–12

    Google Scholar 

  • Gagliardi D, Leaver C (1999) Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J 18:3757–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg H, Banga S, Bansal P, Atri C, Banga S (2007) Hybridizing Brassicarapa with wild crucifers Diplotaxiserucoides and Brassicamaurorum. Euphytica 156:417–424

    Article  Google Scholar 

  • Geddy R, Mahé L, Brown G (2005) Cell-specific regulation of a Brassicanapus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. Plant J Cell Mol Biol 41:333–345

    Article  CAS  Google Scholar 

  • Haas B, Salzberg S, Zhu W, Pertea M, Allen J, Orvis J, White O, Buell C, Wortman J (2008) Automated eukaryotic gene structure annotation using evidence modeler and the program to assemble spliced alignments. Genome Biol 9:R7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heng S, Wei C, Jing B, Wan Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2014) Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassicajuncea to reveal the origin of the CMS-associated gene orf288. BMC Genomics 15:322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyn EW, Cabbage I, Mar (1981) The origins and development of cytoplasmic male sterile Chinese cabbage. In: Proceeding of the 1st international symposium Taiwan: Asian Vegetable Research and Development Center, pp 293–300

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann J, Meyerowitz E (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELES. Nature 430:356–360

    Article  CAS  PubMed  Google Scholar 

  • Kamiński P, Podwyszyńska M, Starzycki M, Starzycka-Korbas E (2015) Interspecific hybridisation of cytoplasmic male-sterile rapeseed with Ogura cytoplasm and Brassicarapa var. pekinensis as a method to obtain male-sterile Chinese cabbage inbred lines. Euphytica 208(3):519–534

    Article  CAS  Google Scholar 

  • Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K (2008) Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J Cell Mol Biol 55:619–628

    Article  CAS  Google Scholar 

  • Kim D-H, Kang J-G, Kim B-D (2007) Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicumannuum L.). Plant Mol Biol 63:519–532

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S (2013) Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitamoto N, Nishikawa K, Tanimura Y, Urushibara S, Matsuura T, Yokoi S, Takahata Y, Yui S (2017) Development of late-bolting F1 hybrids of Chinese cabbage (Brassicarapa L.) allowing early spring cultivation without heating. Euphytica 213:292

    Article  Google Scholar 

  • Kong L, Zhang Y, Ye Z-Q, Liu X, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M, Antonescu C, Salzberg S (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • l’Homme Y, Stahl R, Li XQ, Hameed A, Brown G (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Lagesen K, Hallin P, Rødland E, Stærfeldt H, Rognes T, Ussery D (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laser K, Lersten N (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425–454

    Article  Google Scholar 

  • Li H, Pinot F, Sauveplane V, Werck D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A (2011) Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics 12:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak K, Schmittgen T (2000) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274

    Article  CAS  PubMed  Google Scholar 

  • Lowe T, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acid Res 25:955–964

    Article  CAS  Google Scholar 

  • Mei S, Liu T, Wang Z (2016) Comparative transcriptome profile of the cytoplasmic male sterile and fertile floral buds of radish (Raphanussativus L.). Int J Mol Sci 17:42

    Article  PubMed Central  CAS  Google Scholar 

  • Oliver C, Santos J, Pradillo M (2014) On the role of some ARGONAUTE proteins in meiosis and DNA repair in Arabidopsisthaliana. Front Plant Sci 5:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Pranathi K, Viraktamath BC, Neeraja CN, Balachandran SM, Hariprasad AS, Rao PK, Kulkarni SR, Senguttuvel P, Hajira SK, Balachiranjeevi CHJMB (2016) Comparative analysis of sequences of mitochondrial genomes of wild abortive male sterile (WA-CMS) and male fertile lines of rice, development of functional markers for WA-CMS trait and their use in assessment of genetic purity of seeds of WA-CMS lines. Mol Breed 36:1–12

    Article  CAS  Google Scholar 

  • Rhoads D, Levings C, Siedow J (1995) URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane OFCMS-T mitochondria. J Bioenerg Biomembr 27:437–445

    Article  CAS  PubMed  Google Scholar 

  • Shiga T, Baba S (1973) Cytoplasmic male sterility in oilseed rape (Brassicanapus L.) and its utilization to breeding. Jpn J Breed 23:187–197

    Article  Google Scholar 

  • Singh M, Brown G (1992) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 3:1349–1362

    Google Scholar 

  • Sun L, Zhang L, Liu H (2013) Prediction of long non-coding RNAs based on RNA-Seq*. Prog Biochem Biophys Biophys 39:1156–1166

    Article  CAS  Google Scholar 

  • Sun R, Fang Z, Zhang S, Li F, Niu X, Wu F (2000) Biochemical analysis of cold-tolerant Ogura CMS Chinese cabbage lines. Acta Horticult Sin 27(3):187–192

    Google Scholar 

  • Tafer H, Hofacker I (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics (Oxford, England) 24:2657–2663

    Article  CAS  Google Scholar 

  • Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanussativus L.). BMC genomics 13:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, Baren M, Salzberg S, Wold B, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, Wang P, Nian L, Lindsey K, Zhang X (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytologist Phytol 207:1181–1197

    Article  CAS  Google Scholar 

  • Wilson Z, Zhang D-B (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Exp Botany Bot 60:1479–1492

    Article  CAS  Google Scholar 

  • Xie Y, Zhang W, Wang Y, Xu L, Zhu X, Everlyne M, Liu LW (2016) Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer. Funct Integr Genomics 16:529–543

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chen B, Zhang F, Yu Y, Zhao X, Yu S, Xu J (2009) Molecular Identification of A Purple Chinese Cabbage CMS Material. Acta Agricult Boreali Sin 24(3):174–178

    CAS  Google Scholar 

  • Zhang MF, Chen LP, Wang BL, Yang JH, Chen ZJ, Hirata Y (2003) Characterization of atpA and orf220 genes distinctively present in a cytoplasmic male-sterile line of tuber mustard. J Horticult Sci Biotechnol 78:837–841

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2016YFD0101701), the scientist training program of BAAFS (JKZX201906), the Science and Technology Innovation Capacity Project (KJCX20170710), the collaborative innovation center of BAAFS (KJCX201907-2), the National Natural Science Foundation of China (No. 31801852, No. 3180110043), the Key Program of Beijing Municipal Science and Technology Committee (Z191100004019010), and the earmarked fund for China Agriculture Research System (CARS-23-A-05).

Author information

Authors and Affiliations

Authors

Contributions

PRL led the sequencing and data analysis, and wrote the manuscript. DSZ provided the CMS materials and did the backcross work. TBS, WHW, XYZ, and YJY provided comments relating to the manuscript. ZXL performed the qRT-PCR analysis. PRL, SCY, and FLZ conceived and designed the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shuancang Yu or Fenglan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Carlos F. Quiros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

The five floral bud developmental stages and four floral organs used for RT-PCR. (a) Flower buds of BVRC-CMS96 (left) and the maintainer line 18BCM (right) were divided into five stages: S1 (1.5-2.5 mm), S2 (2.5-3.5 mm), S3 (3.5-4.5 mm), S4 (4.5-5.5 mm) and S5 (>6 mm). (b) The four floral organs are calyx, petal, stamen, and stigma. The white scale bar = 0.5 centimeter.

Figure S2

Synteny comparison between the mitochondrial genomes of BVRC-CMS96 and 18BCM.

Figure S3

Predicted protein sequence alignments of orf224a, orf261a, and orf261b from several CMS systems in B. rapa. (a) Predicted protein sequence alignments between BVRC-CMS96 orf224 and Pol orf224. (b) Predicted protein sequence alignments between BVRC-CMS96 orf261a and 18BCM orf261a. (c) Predicted protein sequence alignments between BVRC-CMS96 orf261b and Nap orf261.

Table S1

Oligonucleotide primers used for orf138 validation and qRT-PCR assays. (DOCX 16 kb)

Table S2

Floral characters of Chinese cabbage backcross 7- (BC7)-generation plants of BVRC-CMS96, Ogu CMS, Pol CMS, and the maintainer lines. (DOCX 15 kb)

Table S3

Agronomic traits of BC7 Chinese cabbage lines with BVRC-CMS96, Pol CMS, Ogu CMS, and the maintainer lines. (DOCX 16 kb)

Table S4

Gene function analysis in the BVRC-CMS96 mitochondrial genome. (XLSX 14 kb)

Table S5

Gene function analysis in the 18BCM mitochondrial genome. (XLSX 13 kb)

Table S6

Summary of structural variations in the five mitochondrial genomes. (DOCX 14 kb)

Table S7

Unique ORFs in the mitochondrial genomes of BVRC-CMS96 and 18BCM in Chinese cabbage. (DOCX 16 kb)

Table S8

Repeat sequences in the mitochondrial genomes of Chinese cabbage BVRC-CMS96 and 18BCM. (XLSX 10 kb)

Table S9

The differentially expressed genes (DEGs) between BVRC-CMS96 and 18BCM quantified using the FPKM method. (XLSX 84 kb)

Table S10

The differentially expressed lncRNAs (DELs) between BVRC-CMS96 and 18BCM. (XLSX 38 kb)

Table S11

The bracketing genes between BVRC-CMS96 and 18BCM. (XLSX 15 kb)

Table S12

The predicted antisense lncRNA-mRNA interactions between BVRC-CMS96 and 18BCM. (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhang, D., Su, T. et al. Genome-wide analysis of mRNA and lncRNA expression and mitochondrial genome sequencing provide insights into the mechanisms underlying a novel cytoplasmic male sterility system, BVRC-CMS96, in Brassicarapa. Theor Appl Genet 133, 2157–2170 (2020). https://doi.org/10.1007/s00122-020-03587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03587-z

Keywords

Navigation