Skip to main content
Log in

Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Excessive levels of boron (B) in the subsoil can severely limit crop yields, particularly under dryland conditions where crops often have to depend on rainfall and available water stored in the soil during fallow. In bread wheat (Triticum aestivum L.), boron tolerance is controlled by at least two loci located on chromosomes 4AL (Bo4) and 7BL (Bo1). In this study, we sought to determine whether novel genomic regions can be identified in wheat primary synthetic hexaploids (SHWs). The study used data from 333 SHW lines imported into Australia in different shipments between 2003 and 2007. On average, the SHWs were uniformly more tolerant to boron toxicity than the sensitive check, Meering, and the top 5 % showed tolerance levels that were superior (P ≤ 0.05) to that of Halberd, the most tolerant wheat check cultivar. At a genome-wide significance threshold of −log(P) ≥ 2.8, association analyses using different algorithms consistently identified three DArT markers, two on chromosome 1AL and one on 4AL. The 4AL region was localised close to the deletion bin location of Bo4, the root-specific boron transporter gene. On the other hand, the two loci on chromosome 1A represent novel regions, which when validated will increase the options of achieving tolerance beyond that conferred by Bo1 and Bo4 alone in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5:1–16

    Article  Google Scholar 

  • Ali-Benali MA, Badawi M, Houde Y, Houde M (2013) Identification of oxidative stress-responsive C2H2 zinc fingers associated with Al tolerance in near-isogenic wheat lines. Plant Soil 366:199–212

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  • Chantachume Y, Smith D, Hollamby GJ, Paull JG, Rathjen AJ (1995) Screening for boron tolerance in wheat (T. aestivum) by solution culture in filter paper. Plant Soil 177:249–254

    Article  CAS  Google Scholar 

  • Dreccer MF, Ogbonnaya F, Borgognone G, Wilson J (2003) Boron tolerance is present in primary synthetic wheats. In: Proceedings of the 10th international wheat genetics symposium. Paestum, Italy, pp 1130–1132. 1–6 Sept

  • Dreccer M, Borgognone G, Ogbonnaya F, Trethowan R, Winter B (2007) CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Res 100:218–228

    Article  Google Scholar 

  • Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420

    Article  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • El-Bouhssini M, Ogbonnaya FC, Chen M, Lhaloui S, Rihawi F, Dabbous A (2013) Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: hessian fly, Russian wheat aphid and Sunn pest in the fertile crescent. Genet Res Crop Evol 60:621–627

    Article  CAS  Google Scholar 

  • Emebiri LC, Oliver JR, Mrva K, Mares D (2010) Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol Breed 26:39–49

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Shimada S, Takumi S, Mura K (2010) Differential effects of Aegilops tauschii genotypes on maturing-time in synthetic hexaploid wheats. Breed Sci 60:286–292

    Article  CAS  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rίo LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157–165

    Article  CAS  PubMed  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jefferies SP, Barr AR, Karakousis A, Kretschmer JM, Manning S, Chalmers KJ, Nelson JC, Islam A, Langridge P (1999) Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 98:1293–1303

    Article  CAS  Google Scholar 

  • Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretschmer JM, Manning S, Islam AKMR, Langridge P, Chalmers KJ (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor Appl Genet 101:767–777

    Article  CAS  Google Scholar 

  • Joukhadar R, El-Bouhssini M, Jighly A, Ogbonnaya FC (2013) Genome-wide association mapping for five major pest resistances in wheat. Mol Breed 32:943–960

    Article  CAS  Google Scholar 

  • Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci 61:130–141

    Article  Google Scholar 

  • Kastori RR, Maksimovic IV, Kraljevic-Balalic MM, Kobiljski BD (2008) Physiological and genetic basis of plant tolerance to excess boron. Proc Nat Sci Matica Srpska Novi Sad 114:41–51

    Article  CAS  Google Scholar 

  • Kraljevic-Balalic M, Kastori R, Kobiljski B (2004) Variability and gene effects for boron concentration in wheat leaves. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Genetic variation for plant breeding. pp 31–40

  • Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Wan HS, Yang WY (2014) Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J System Evol 52:735–742

    Article  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O’Sullivan DM, Rose GA, Howell PJ (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3 (Bethesda) 4:1603–1610

    Article  Google Scholar 

  • Mares DJ, Mrva K (2008) Genetic variation for quality traits in synthetic wheat germplasm. Aust J Agric Res 59:406–412

    Article  CAS  Google Scholar 

  • Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin EM, Eastwood RF, Ogbonnaya FC, Emebiri L (2004) Molecular marker for the boron tolerance of the wheat cultivar Yanac. In: Proceedings of the 54th Australian cereal chemistry conference and 11th wheat breeders’ assembly. Canberra, pp 29–32

  • McDonald GK, Taylor JD, Verbyla A, Kuchel H (2012) Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop Pasture Sci 63:1043–1065

    Article  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. × T. tauschii; 2n = 6 × = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43:129–134

    Article  Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311

    Article  CAS  Google Scholar 

  • Ogbonnaya F, Ye G, Trethowan R, Dreccer F, Lush D, Shepperd J, van Ginkel M (2007) Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157:321–336

    Article  Google Scholar 

  • Ogbonnaya F, Imtiaz M, Bariana H, McLean M, Shankar M, Hollaway G, Trethowan R, Lagudah E, van Ginkel M (2008) Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Crop Pasture Sci 59:421–431

    Article  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells, ME, Tsujimoto H (2013) Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement. In: Janick J (ed) Plant breeding reviews, vol 37. Wiley, New York

  • Pallotta M, Schnurbusch T, Hayes J, Hay A, Baumann U, Paull J, Langridge P, Sutton T (2014) Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature. doi:10.1038/nature13538

    PubMed Central  Google Scholar 

  • Paull JG, Rathjen AJ, Cartwright B (1991) Major gene control of tolerance of bread wheat (Triticum aestivum L.) to high concentrations of soil boron. Euphytica 55:217–228

    Article  CAS  Google Scholar 

  • Paull JG, Nable RO, Rathjen AJ (1992) Physiological and genetic control of the tolerance of wheat to high concentrations of boron and implications for plant breeding. Plant Soil 146:251–260

    Article  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A, He Z (2014) Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128

    Article  PubMed Central  PubMed  Google Scholar 

  • Reid R (2010) Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci 178:9–11

    Article  CAS  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Jiang D, Wang S, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3 (Bethesda) 3:1105–1114

    Article  Google Scholar 

  • Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP, Langridge P (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Langridge P, Sutton T (2008) The Bo1-specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Genome 51:963–971

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimoto H (2011) Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed Sci 61:347–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Takumi S, Naka Y, Morihiro H, Matsuoka Y (2009) Expression of morphological and flowering time variation through allopolyploidization: an empirical study with 27 wheat synthetics and their parental Aegilops tauschii accessions. Plant Breed 128:585–590

    Article  Google Scholar 

  • Trethowan R, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • VSN International (2011) GenStat for Windows 14th Edition. VSN International, Hemel Hempstead, UK. Web page, GenStat.co.uk

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087. doi:10.1038/ncomms6087

    Article  PubMed Central  PubMed  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48:854–865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The data used for this paper were derived from the Synthetic Evaluation Project funded by grants from the Grains Research and Development Corporation (GRDC). Additional financial support from the NSW Department of Primary Industries, Australia, is also gratefully acknowledged. The authors also acknowledge the two anonymous reviewers of the manuscript for their helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Emebiri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Supplementary material 2 (XLS 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emebiri, L.C., Ogbonnaya, F.C. Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Mol Breeding 35, 68 (2015). https://doi.org/10.1007/s11032-015-0273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0273-x

Keywords

Navigation