Skip to main content

Genetic Dissection of Aluminium Tolerance in the Triticeae

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Aluminium (Al) toxicity is the major constraint to crop productivity on acidic soils worldwide. Members of the Triticeae such as wheat, barley, and rice, show a range of genetic variation within and between species. Among key cereals, rye displays the maximum level of Al tolerance, while barley shows the least. In the majority of species, genetic control for aluminium tolerance has been investigated using conventional genetic and molecular analyses. During the last decade, candidate and causative genes and mechanisms for Al tolerance have been identified in wheat, barley, rice and sorghum. New phenotypic and genotyping platforms were also developed in order to understand genes and their networks underlying Al tolerance comprehensively. In this chapter, we review the progress made on recent discoveries on genetic dissection of aluminium tolerance with special focus on wheat, barley, and rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhunov ED, Goodyear AW, Geng S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    CAS  PubMed  Google Scholar 

  • Altshuler D, Pollara VJ, Cowles CR et al (2000) An SNP map of the human genome genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    CAS  PubMed  Google Scholar 

  • Baier AC, Somers DJ, Gustafson JP (1995) Aluminium tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breed 114:291–296

    CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

    PubMed Central  PubMed  Google Scholar 

  • Benito C, Silva-Navas J, Fontecha G et al (2009) From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil 327:107–120

    Google Scholar 

  • Bennet RJ (1997) The response of lucerne and red clover roots to aluminium/Hematoxylin: How universal is the hematoxylin test for aluminium? S Afr J Plant Soil 14:120–125

    CAS  Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminium tolerance in ‘Atlas 66’ wheat. Genome 35:689–693

    Google Scholar 

  • Bona L, Wright RJ, Baligar VC, Matuz J (1993) Screening wheat and other small grains for acid soil tolerance. Landsc Urban Plan 27:175–178

    Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    CAS  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    CAS  PubMed  Google Scholar 

  • Cai SB, Bai GH, Zhang DD (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56

    CAS  PubMed  Google Scholar 

  • Camargo CEdO, Felicio JC, Ferreira F (1989) Wheat breeding: XXI. Evaluation of inbred lines in different regions of the state of São Paulo, Brazil. Bragantia 48:53–71

    Google Scholar 

  • Camargo CEdO, Filho F, Penteado AW et al (1992) Wheat breeding: XXVII. Variance, heritability and correlations in hybrid populations for grain yield, tolerance to aluminum toxicity and plant height. Bragantia 51:21–30

    CAS  Google Scholar 

  • Cançado GMA, Loguercio LL, Martins PR et al (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet 99:747–754

    Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Google Scholar 

  • Collins NC, Shirley NJ, Saeed M et al (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next generation sequencing. Nat Rev Genet 12:499–510

    CAS  PubMed  Google Scholar 

  • Delhaize E, Craig S, Beaton CD et al (1993a) Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. PNAS 101: 15249–15254

    Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262

    CAS  PubMed  Google Scholar 

  • Delhaize E, James RA, Ryan PR (2012) Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytol 195:609–619

    CAS  PubMed  Google Scholar 

  • Echart CL, Barbosa-Neto JF, Garvin DF et al (2002) Aluminum tolerance in barley: methods for screening and genetic analysis. Euphytica 126:309–313

    CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Famoso AN, Clark RT, Shaff JE et al (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol 153:1678–1691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Famoso AN, Zhao K, Clark RT et al (2011) Genetic architecture of aluminium tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e1002221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    CAS  PubMed  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C et al (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260

    CAS  PubMed  Google Scholar 

  • Fujii M, Yamaji N, Sato K, Ma JF. 2009. Mechanism regulating HvAACT1 expression in barley. In: Liao H, Yan X, Kochian LV, eds. Plant–soil interactions at low pH: a nutriomic approach – Proceedings of the 7th International Symposium of Plant–Soil Interactions at Low pH. Guangzhou: South China University of Technology Press, 165–166.

    Google Scholar 

  • Fujii M, Yokosho K, Yamaji N et al (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:713

    PubMed Central  PubMed  Google Scholar 

  • Furukawa J, Yamaji N, Wang H et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    CAS  PubMed  Google Scholar 

  • Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

    CAS  Google Scholar 

  • Gallego FJ, Calles B, Benito C (1998a) Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.). Theor Appl Genet 97:1104–1109

    CAS  Google Scholar 

  • Gallego FJ, Lopez-Solanilla ELÃ, Figueiras AM, Benito C (1998b) Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye. Theor Appl Genet 96:426–434

    CAS  Google Scholar 

  • Galvez L, Clark RB, Klepper LA, Hansen L (1991) Organic acid and free proline accumulation and nitrate reductase activity in sorghum (Sorghum bicolor) genotypes differing in aluminum tolerance. In: ‘Plant-Soil Interaction at Low PH’, Wright RJ, Baligar VC, Murrmann RP (eds) Kluwer Academic Publishers, Dordrecht, pp 859–867

    Google Scholar 

  • Garvin DF, Carver BF (2003) Role of the genotype in tolerance of acidity and aluminium toxicity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, Inc., New York, pp 387–406

    Google Scholar 

  • Gourley LM, Rogers SA, Ruiz-Gomez C, Clark RB (1990) Genetic aspects of aluminium tolerance in sorghum. Plant Soil 123:211–216

    CAS  Google Scholar 

  • Gruber B, Ryan P, Richardson A et al (2006) The identification and characterisation of ALMT1 homologs in the Triticeae. Proceedings of 8th International Congress of Plant Molecular Biology, Adelaide, Australia, p 185

    Google Scholar 

  • Hoekenga OA, Maron LG, Cancado GMA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    CAS  PubMed  Google Scholar 

  • Horst WJ, Puschel AK, Schmohl N (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192:23–30

    CAS  Google Scholar 

  • Hu SW, Bai GH, Carver BF, Zhang DD (2008) Diverse origins of aluminium-resistance sources in wheat. Theor Appl Genet 118:29–41

    CAS  PubMed  Google Scholar 

  • Huang CF, Yamaji N, Mitani N et al (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    CAS  Google Scholar 

  • Inostroza-Blancheteau C, Soto B, Ibáñez C et al (2010) Mapping aluminum tolerance loci in cereals: a tool available for crop breeding. Electron J Biotech 13:doi:10.2225/vol2213-issue2224-fulltext-2224

    Google Scholar 

  • Ishikawa S, Wagatsuma T, Sasaki R, Ofei-Manu P (2000) Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci Plant Nutr 46:751–758

    CAS  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A et al (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Nat Acad Sci 104:9900–9905

    PubMed  Google Scholar 

  • Johnson JP, Carver BF, Baligar VC (1997) Expression of aluminum tolerance transferred from Atlas 66 to hard winter wheat. Crop Sci 37:103–108

    CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a crtitical review. Plant Soil 205:25–44

    CAS  Google Scholar 

  • Kerridge PC, Kronstad WE (1968) Evidence of genetic resistance to aluminium toxicity in wheat. Agronomy J 60:710–711

    Google Scholar 

  • Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer. J Exp Bot 56:1853–1865

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Krill AM, Kirst M, Kochian LV et al (2010) Association and linkage analysis of aluminium tolerance genes in maize. PLoS ONE 5:e9958

    PubMed Central  PubMed  Google Scholar 

  • Krizek DT, Foy CD (1988) Role of water stress in differential aluminium tolerance of two barley cultivar in acid soil. J Plant Nutr 11:351–367

    CAS  Google Scholar 

  • Larsen PB, Degenhardt J, Tai CY et al (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ligaba A, Katsuhara M, Ryan PR et al (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ligaba A, Maron L, Shaff J et al (2012) Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ 35:1185–1200

    CAS  PubMed  Google Scholar 

  • Lima M, Furlani PR, Miranda-Filho JB de (1992) Divergent selection for aluminium tolerance in a maize (Zea mays L.) population. Maydica 37:123–132

    Google Scholar 

  • Liu J, Magalhaes JV, Shaff J et al (2008) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 389–399

    Google Scholar 

  • Loarce Y, Hueros G, Ferrer E (1996) A molecular linkage map of rye. Theor Appl Genet 93:1112–1118

    CAS  PubMed  Google Scholar 

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminium tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    CAS  Google Scholar 

  • Ma HX, Bai GH, Carver B, Zhou LL (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    CAS  PubMed  Google Scholar 

  • Ma JF, Shen R, Zhao Z et al (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    CAS  PubMed  Google Scholar 

  • Ma JF, Nagao S, Sato K et al (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55:1335–1341

    CAS  PubMed  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang YH et al (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905–1914

    CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    CAS  PubMed  Google Scholar 

  • Maltais K, Houde M (2002) A new biochemical marker for aluminium tolerance in plants. Physiol Plant 115:81–86

    CAS  PubMed  Google Scholar 

  • Maron LG, Pineros MA, Guimaraes CT et al (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740

    CAS  PubMed  Google Scholar 

  • Masojć P, Mysków B, Milczarski P (2001) Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor Appl Genet 102:1273–1279

    Google Scholar 

  • Massot N, Poschenrieder C, Barcelo J (1992) Differential response of three beans (Phaselous vulagaris) cultivars to aluminium. Acta Botanica Neerlandica 41:293–298

    CAS  Google Scholar 

  • Massot N, Llugany M, Poschenrieder C, Barcelo J (1999) Callose production as indicator of aluminum toxicity in bean cultivars. J Plant Nutr 22:1–10

    CAS  Google Scholar 

  • Miftahudin T, Scoles GJ, Gustafson JP (2002) AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 104:626–631

    CAS  Google Scholar 

  • Miftahudin T, Scoles GJ, Gustafson JP (2004) Development of PCR-based codominant markers flanking the Alt3 gene in rye. Genome 47:231–238

    CAS  PubMed  Google Scholar 

  • Miftahudin T, Chikmawati T, Ross K et al (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110:906–913

    CAS  PubMed  Google Scholar 

  • Milla R, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    CAS  PubMed  Google Scholar 

  • Minella E, Sorrells ME (1992) Aluminum tolerance in barley: Genetic relationships among genotypes of diverse origin. Crop Sci 32:593–598

    CAS  Google Scholar 

  • Minella E, Sorrells ME (1997) Inheritance and chromosome location of Alp, a gene controlling aluminium tolerance in ‘Dayton’ barley. Plant Breed 116:465–469

    CAS  Google Scholar 

  • Moroni JS, Briggs KG, Taylor GJ (1991) Pedigree analysis of the origin of manganese tolerance in Canadian spring wheat (Triticum aestivum L.) cultivars. Euphytica 56:107–120

    CAS  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U et al (2009a) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    CAS  Google Scholar 

  • Navakode S, Weidner A, Varshney RK et al (2009b) A QTL analysis of aluminium tolerance in barley, using gene-based markers. Cereal Res Commun 37:531–540

    CAS  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC et al (2003) Identification and mapping of QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., to indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    CAS  PubMed  Google Scholar 

  • Nguyen VT, Burrow MD, Nguyen HT et al (2001) Molecular mapping of genes conferring aluminium tolerance in rice (Oryza sativa L.). Theor Appl Genet 102:1002–1010

    CAS  Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S et al (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Gen 267:772–780

    CAS  Google Scholar 

  • Niedziela A, Bednarek P, Cichy H et al (2012) Aluminum tolerance association mapping in triticale. BMC Genomics 13:67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ninamango-Cardenas FE, Guimaraes CT, Martins PR et al (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica 130:223–232

    CAS  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T et al (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    CAS  PubMed  Google Scholar 

  • Pan W, Hopkins A, Jackson W (1989) Aluminum inhibition of shoot lateral branches of Glycine max and reversal by exogenous cytokinin. Plant Soil 120:1–9

    CAS  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira JF, Zhou GF, Delhaize E et al (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106:205–214

    CAS  PubMed  Google Scholar 

  • Philipp U, Wehling P, Wricke G (1994) A linkage map of rye. Theor Appl Genet 88:243–248

    CAS  PubMed  Google Scholar 

  • Pineros MA, Cancado GMA, Maron LG et al (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1—an anion-selective transporter. Plant J 53:352–367

    CAS  PubMed  Google Scholar 

  • Polle E, Konzak CF (1985) A single scale for determining Al tolerance levels in cereals. Agronomy Abstracts 67, ASA, Madison, USA

    Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    CAS  Google Scholar 

  • Raman H, Gustafson P (2010) Molecular breeding for aluminium tolerance in cereals. In: Root Genomics (A Costa de Oliveira and R.K. Varshney eds). Springer, pp 251–288

    Google Scholar 

  • Raman H, Moroni S, Raman R et al (2001) A genomic region associated with aluminium tolerance in barley. Proceedings of the 10th Australian Barley Technical Symposium. (http://wwwregionalorgau/au/abts/2001/t3/indexhtm#TopOfPage), Canberra

    Google Scholar 

  • Raman H, Moroni JS, Sato K et al (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    CAS  PubMed  Google Scholar 

  • Raman H, Karakousis A, Moroni JS et al (2003) Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aust J Agric Res 54:1315–1321

    CAS  Google Scholar 

  • Raman H, Wang JP, Read B et al (2005a) Molecular mapping of resistance to aluminium toxicity in barley. Proceedings of Plant and Animal Genome XIII Conference, San Diego, p 154

    Google Scholar 

  • Raman H, Zhang K, Cakir M et al (2005b) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    CAS  Google Scholar 

  • Raman H, Raman R, Wood R, Martin P (2006) Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat (Triticum aestivum L.). Mol Breed 18:171–183

    CAS  Google Scholar 

  • Raman H, Ryan PR, Raman R et al (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet 116:343–354

    CAS  PubMed  Google Scholar 

  • Raman H, Raman R, Luckett D et al (2009) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breed Sci 59:373–381

    CAS  Google Scholar 

  • Raman H, Stodart B, Ryan PR et al (2010) Genome wide association analyses of common wheat (Triticum aestivum L) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966

    CAS  PubMed  Google Scholar 

  • Reid DA (1971) Genetic control of reaction to aluminum in winter barley. In: Nilan RA (ed) Proceedings of the 2nd International Barley Genetics Symposium (1969). Washington State University Press, Pullman, WA, pp 409–413

    Google Scholar 

  • Reid DA, Fleming AL, Foy CD (1971) A method for determining aluminum response of barley in nutrient solution in comparison to response in Al-toxic soil. Agronomy J 63:600–603

    CAS  Google Scholar 

  • Rhue RD, Grogan CO, Stockmeyer EW, Everett HL (1978) Genetic control of aluminium tolerance in corn. Crop Sci 18:1063–1067

    Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Google Scholar 

  • Ryan P, Raman H, Gupta S et al (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and from more recent cis mutations to TaALMT1. Plant J 64:446–455

    CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Characterization of Al-stimulated efflux of malate from apices of Al-tolerant wheat roots. Planta 196:103–110

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995b) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S et al (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    CAS  PubMed  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E et al (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    CAS  PubMed  Google Scholar 

  • Senft P, Wricke G (1996) An extended genetic map of rye (Secale cereale L.). Plant Breed 115:508–510

    Google Scholar 

  • Smith AV, Thomas DJ, Munro HM, Abecasis GR (2005) Sequence features in regions of weak and strong linkage disequilibrium. Genome Res 15:1519–1534

    CAS  PubMed  Google Scholar 

  • Somers DJ, Briggs KG, Gustafson JP (1996) Aluminum stress and protein synthesis in near isogenic lines of Triticum aestivum differing in aluminum tolerance. Physiol Plant 97:694–700

    CAS  Google Scholar 

  • Soto-Cerda BJ, Cloutier S (2012) Association Mapping in Plant Genomes. Genetic Diversity in Plants. Prof Mahmut Caliskan (Ed), ISBN: 978–953-51–0185-7, InTec. http://wwwintechopencom/books/genetic-diversity-in-plants/association-mapping-in-plant-genomes

    Google Scholar 

  • Stich B, Melchinger AE, Piepho HP et al (2007) Potential causes of linkage disequilibrium in a European maize breeding program investigated with computer simulations. Theor Appl Genet 115:529–536

    PubMed  Google Scholar 

  • Stich B, Mohring J, Piepho HP et al (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    PubMed  Google Scholar 

  • Stodart BJ, Raman H, Coombes N, Mackay M (2007) Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genet Res Crop Evol 54:759–766

    Google Scholar 

  • Tang Y, Sorrells ME, Kochian LV, Garvin DF (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci 40:778–782

    CAS  Google Scholar 

  • Uhde-Stone C, Liu J, Zinn KE et al (2005) Transgenic proteiod roots of white lupin: a vehicle for characterisation and silencing root genes involved in adapation to P stress. Plant J 44:840–853

    CAS  PubMed  Google Scholar 

  • von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    CAS  Google Scholar 

  • Wang JP, Raman H, Read B et al (2004) Comparison of root staining and root elongation in predicting aluminium tolerance using SSR markers in barley. Proceeding of 4th International Crop ScienceCongress. http://wwwcropscienceorgau/icsc2004/poster/3/6/4/1168_wangjhtm, Brisbane

    Google Scholar 

  • Wang J, Raman H, Zhang G-P et al (2006a) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms and screening methods. J Zhejiang Univ Sci 7:769–787

    CAS  Google Scholar 

  • Wang JP, Raman H, Read B et al (2006b) Validation of an Alt locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen (Hordeum vulgare L.). Aust J Agric Res 57:113–118

    CAS  Google Scholar 

  • Wang JP, Raman H, Zhou MX et al (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    CAS  PubMed  Google Scholar 

  • Wenzl P, Li H, Carling J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    PubMed Central  PubMed  Google Scholar 

  • Wight CP, Kibite S, Tinker NA, Molnar SJ (2006) Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theor Appl Genet 112:222–231

    CAS  PubMed  Google Scholar 

  • Wu P, Liao CY, Hu B, Yi et al (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303

    CAS  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385

    CAS  PubMed  Google Scholar 

  • Xue Y, Jiang L, Su N et al (2007) The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice. Planta 227:255–262

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Sasaki T, Sivaguru M et al (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    CAS  PubMed  Google Scholar 

  • Yamajia N, Huang CF, Nagao S et al (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Google Scholar 

  • Yan J, Shah T, Warburton ML et al (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451

    PubMed Central  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterisation of two MATE genes in rye. Funct Plant Biol 37:296–303

    CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069

    CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Google Scholar 

  • Yu JM, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  Google Scholar 

  • Zhang X, Jessop RS (1998) Analysis of genetic variability of aluminium tolerance response in triticale. Euphytica 102:177–182

    CAS  Google Scholar 

  • Zhou LL, Bai G-H, Ma HX, Carver BF (2007a) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161

    CAS  Google Scholar 

  • Zhou LL, Bai GH, Carver BF, Zhang DD (2007b) Identification of new sources of aluminium resistance in wheat. Plant Soil 297:105–118

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raman, H., Gustafson, P. (2014). Genetic Dissection of Aluminium Tolerance in the Triticeae. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_8

Download citation

Publish with us

Policies and ethics