Skip to main content
Log in

Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: molecular docking, MD simulation, ADMET and antidiabetic screening

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Novel pyrrolo[2,3-d]pyrimidine-based analogues were designed, synthesized, and evaluated for their ability to inhibit the α-amylase enzyme in order to treat diabetes. In vitro antidiabetic analysis demonstrated excellent antidiabetic action for compounds 5b, 6c, 7a, and 7b, with IC50 values in the 0.252–0.281 mM range. At a 200 μg/mL concentration, the exceptional percent inhibition values for compounds 5a, 5b, 5d, and 6a varied from 97.79 ± 2.86% to 85.56 ± 4.13% overperforming the standard (acarbose). Molecular docking of all compounds performed with Bacillus paralicheniformis α-amylase enzyme. The most active compounds via in vitro and non-toxic via in silico ADMET and molecular docking analysis, hybrids 6c, 7a, and 7b displayed binding affinity from − 8.2 and − 8.5 kcal/mol. Molecular dynamic simulations of most active compound 5b and 7a investigated into the active sites of the Bacillus paralicheniformis α-amylase enzyme for a 100-ns indicating the stability of hybrid-protein complex. Consistent RGyr values for the two complexes under study further suggest that the system's proteins are closely packed in the dynamic state. Synthesized analogs’ in vitro biological assessments, ADMET, molecular docking, and MD modelling reveal that 5b, 6c, 7a, and 7b hybrid analogs may be employed in the development of future antidiabetic drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deepa M, Bhansali A, Anjana R et al (2014) Knowledge and awareness of diabetes in urban and rural India: The Indian Council of Medical Research India Diabetes Study (Phase I): Indian Council of Medical Research India Diabetes 4. Indian J Endocrinol Metab 18:379. https://doi.org/10.4103/2230-8210.131191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zala AR, Naik HN, Ahmad I et al (2023) Design and synthesis of novel 1,2,3-triazole linked hybrids: molecular docking, MD simulation, and their antidiabetic efficacy as α-amylase inhibitors. J Mol Struct 1285:135493. https://doi.org/10.1016/j.molstruc.2023.135493

    Article  CAS  Google Scholar 

  3. Ligthelm RJ, Kaiser M, Vora J, Yale JF (2012) Insulin use in elderly adults: risk of hypoglycemia and strategies for care. J Am Geriatr Soc 60:1564–1570. https://doi.org/10.1111/J.1532-5415.2012.04055.X

    Article  PubMed  Google Scholar 

  4. Lazar C, Kluczyk A, Kiyota T, Konishi Y (2004) Drug evolution concept in drug design: 1. Hybridization method. J Med Chem 47(27):6973–6982. https://doi.org/10.1021/jm049637

    Article  CAS  PubMed  Google Scholar 

  5. Viegas-Junior C, Danuello A, da Bolzani V et al (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852. https://doi.org/10.2174/092986707781058805

    Article  CAS  PubMed  Google Scholar 

  6. Zala AR, Rajani DP, Kumari P (2023) Design, synthesis, molecular docking and in silico ADMET investigations of novel piperidine-bearing cinnamic acid hybrids as potent antimicrobial agents. J Iran Chem Soc. https://doi.org/10.1007/s13738-023-02801-1

    Article  Google Scholar 

  7. Szumilak M, Wiktorowska-Owczarek A, Stanczak A (2021) Hybrid drugs—a strategy for overcoming anticancer drug resistance? Molecules 26:2601. https://doi.org/10.3390/molecules26092601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerru N, Singh P, Koorbanally N et al (2017) Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem 142:179–212. https://doi.org/10.1016/j.ejmech.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  9. Abbot V, Sharma P, Dhiman S et al (2017) Small hybrid heteroaromatics: resourceful biological tools in cancer research. RSC Adv 7:28313–28349. https://doi.org/10.1039/C6RA24662A

    Article  CAS  Google Scholar 

  10. Nepali K, Sharma S, Sharma M et al (2014) Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 77:422–487. https://doi.org/10.1016/j.ejmech.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  11. Chen LZ, Shu HY, Wu J et al (2021) Discovery and development of novel pyrimidine and pyrazolo/thieno-fused pyrimidine derivatives as potent and orally active inducible nitric oxide synthase dimerization inhibitor with efficacy for arthritis. Eur J Med Chem. https://doi.org/10.1016/J.EJMECH.2021.113174

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gomha SM, Hassaneen HME (2011) Synthesis and antimicrobial activity of some new pyrazoles, fused pyrazolo[3,4-d]-pyrimidine and 1,2-dihydroimidazo-[2,1-c][1,2,4]triazin-6-one derivatives. Molecules 16:6549–6560. https://doi.org/10.3390/MOLECULES16086549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trivedi AR, Dholariya BH, Vakhariya CP et al (2012) Synthesis and anti-tubercular evaluation of some novel pyrazolo[3,4-d] pyrimidine derivatives. Med Chem Res 21:1887–1891. https://doi.org/10.1007/S00044-011-9712-3/TABLES/1

    Article  CAS  Google Scholar 

  14. Rashad AE, Hegab MI, Abdel-Megeid RE et al (2008) Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg Med Chem 16:7102–7106. https://doi.org/10.1016/J.BMC.2008.06.054

    Article  CAS  PubMed  Google Scholar 

  15. Bakhotmah DA, Ali TE, Assiri MA, Yahia IS (2020) Synthesis of some novel 2-{pyrano[2,3-c]pyrazoles-4-ylidene}malononitrile fused with pyrazole, pyridine, pyrimidine, diazepine, chromone, pyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine systems as anticancer agents. Polycycl Aromat Compd 42:2136–2150. https://doi.org/10.1080/10406638.2020.1827445

    Article  CAS  Google Scholar 

  16. Al-Ghorbani M, Gouda MA, Baashen M et al (2022) Piperazine heterocycles as potential anticancer agents: a review. Pharm Chem J 56:29–37. https://doi.org/10.1007/S11094-022-02597-Z

    Article  CAS  Google Scholar 

  17. Patel RV, Mistry B, Syed R et al (2016) Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur J Pharm Sci 88:166–177. https://doi.org/10.1016/J.EJPS.2016.02.01

    Article  CAS  PubMed  Google Scholar 

  18. Sullivan DW, Gad SC, Laulicht B et al (2015) Nonclinical safety assessment of PER977: a small molecule reversal agent for new oral anticoagulants and heparins. Int J Toxicol 34(4):308–317. https://doi.org/10.1177/1091581815590667

    Article  CAS  PubMed  Google Scholar 

  19. Zala AR, Rajani DP, Kumari P (2022) Design, synthesis, molecular docking and antimicrobial and antimycobacterial activities of novel hybrid of coumarin-cinnamic acids. Chem Data Collect. https://doi.org/10.1016/j.cdc.2022.100862

    Article  Google Scholar 

  20. Wang SF, Yin Y, Wu X et al (2014) Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg Med Chem 22:5727–5737. https://doi.org/10.1016/J.BMC.2014.09.048

    Article  CAS  PubMed  Google Scholar 

  21. Bassetto M, Leyssen P, Neyts J et al (2017) In silico identification, design and synthesis of novel piperazine-based antiviral agents targeting the hepatitis C virus helicase. Eur J Med Chem 125:1115–1131. https://doi.org/10.1016/J.EJMECH.2016.10.043

    Article  CAS  PubMed  Google Scholar 

  22. Thamban Chandrika N, Shrestha SK, Ngo HX et al (2018) Alkylated piperazines and piperazine-azole hybrids as antifungal agents. J Med Chem 61:158–173. https://doi.org/10.1021/ACS.JMEDCHEM.7B01138

    Article  CAS  PubMed  Google Scholar 

  23. Batista DC, Silva DPB, Florentino IF et al (2018) Anti-inflammatory effect of a new piperazine derivative: (4-methylpiperazin-1-yl)(1-phenyl-1H-pyrazol-4-yl)methanone. Inflammopharmacology 26:217–226. https://doi.org/10.1007/S10787-017-0390-8

    Article  CAS  PubMed  Google Scholar 

  24. El-Faham A, Armand-Ugón M, Esté JA, Albericio F (2008) Use of N-methylpiperazine for the preparation of piperazine-based unsymmetrical bis-ureas as anti-HIV agents. ChemMedChem 3:1034–1037. https://doi.org/10.1002/CMDC.200800059

    Article  CAS  PubMed  Google Scholar 

  25. Devine R, Kelada M, Leonard S et al (2020) Design, synthesis, and biological evaluation of aryl piperazines with potential as antidiabetic agents via the stimulation of glucose uptake and inhibition of NADH:ubiquinone oxidoreductase. Eur J Med Chem 202:112416. https://doi.org/10.1016/J.EJMECH.2020.112416

    Article  CAS  PubMed  Google Scholar 

  26. Mendoza A, Pérez-Silanes S, Quiliano M et al (2011) Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure–activity relationships. Exp Parasitol 128:97–103. https://doi.org/10.1016/J.EXPPARA.2011.02.025

    Article  CAS  PubMed  Google Scholar 

  27. Prashanth MK, Revanasiddappa HD, Lokanatha Rai KM, Veeresh B (2012) Synthesis, characterization, antidepressant and antioxidant activity of novel piperamides bearing piperidine and piperazine analogues. Bioorg Med Chem Lett 22:7065–7070. https://doi.org/10.1016/J.BMCL.2012.09.089

    Article  CAS  PubMed  Google Scholar 

  28. Shaquiquzzaman M, Verma G, Marella A et al (2015) Piperazine scaffold: a remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 102:487–529. https://doi.org/10.1016/J.EJMECH.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  29. Pal R, Jawaid Akhtar M, Raj K et al (2022) Design, synthesis and evaluation of piperazine clubbed 1,2,4-triazine derivatives as potent anticonvulsant agents. J Mol Struct 1257:132587. https://doi.org/10.1016/J.MOLSTRUC.2022.132587

    Article  CAS  Google Scholar 

  30. Zala AR, Rajani DP, Kumari P (2022) Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.23231

    Article  PubMed  Google Scholar 

  31. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/AC60147A030

    Article  CAS  Google Scholar 

  32. Frisch A (1996) Gaussian 09W reference

  33. Morris GM, Huey R, Olson AJ (2008) Using autodock for ligand–receptor docking. Curr Protoc Bioinformatics 24:8.14.1-8.14.40. https://doi.org/10.1002/0471250953.BI0814S24

    Article  Google Scholar 

  34. Zala AR, Rajani DP, Ahmad I et al (2023) Synthesis, characterization, molecular dynamic simulation, and biological assessment of cinnamates linked to imidazole/benzimidazole as a CYP51 inhibitor. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2170918

    Article  PubMed  Google Scholar 

  35. Tian W, Chen C, Lei X et al (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367. https://doi.org/10.1093/NAR/GKY473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pandey R, Dubey I, Ahmad I et al (2022) In silico study of some dexamethasone analogs and derivatives against SARs-CoV-2 target: a cost-effective alternative to remdesivir for various COVID phases. Current Chin Sci 2:294–309. https://doi.org/10.2174/2210298102666220404102217

    Article  CAS  Google Scholar 

  37. Puri S, Ahmad I, Patel H et al (2023) Evaluation of oxindole derivatives as a potential anticancer agent against breast carcinoma cells: in vitro, in silico, and molecular docking study. Toxicol Vitro 86:105517. https://doi.org/10.1016/J.TIV.2022.105517

    Article  CAS  Google Scholar 

  38. Benjamin I, Louis H, Ekpen FO et al (2022) Modeling the anti-methicillin-resistant Staphylococcus aureus (MRSA) Activity of (E)-6-chloro-N2-phenyl-N4-(4-phenyl-5-(phenyl diazinyl)-2λ3, 3 λ2-thiazol-2-yl)-1, 3, 5-triazine-2,4-diamine. Polycycl Aromat Compd 1:28. https://doi.org/10.1080/10406638.2022.2160773

    Article  CAS  Google Scholar 

  39. Patel KB, Mukherjee S, Bhatt H et al (2023) Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J Mol Struct 1276:134755. https://doi.org/10.1016/J.MOLSTRUC.2022.134755

    Article  CAS  Google Scholar 

  40. Mathew B, Ravichandran V, Raghuraman S et al (2022) Two dimensional-QSAR and molecular dynamics studies of a selected class of aldoxime- and hydroxy-functionalized chalcones as monoamine oxidase-B inhibitors. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2146198

    Article  PubMed  Google Scholar 

  41. Wang T, Liu X, Hao M et al (2016) Design, synthesis and evaluation of pyrrolo[2,3-d]pyrimidine-phenylamide hybrids as potent Janus kinase 2 inhibitors. Bioorg Med Chem Lett 26:2936–2941. https://doi.org/10.1016/J.BMCL.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  42. Kim JT, Hamilton AD, Bailey CM et al (2006) FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Am Chem Soc 128:15372–15373. https://doi.org/10.1021/JA066472G

    Article  CAS  PubMed  Google Scholar 

  43. Paul RK, Ahmad I, Patel H et al (2023) Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of type-II diabetes mellitus: Inferences from in-silico investigations. J Mol Struct 1271:134045. https://doi.org/10.1016/J.MOLSTRUC.2022.134045

    Article  CAS  Google Scholar 

  44. Halder SK, Ahmad I, Shathi JF et al (2022) A comprehensive study to unleash the putative inhibitors of serotype2 of dengue virus: insights from an in silico structure-based drug discovery. Mol Biotechnol. https://doi.org/10.1007/S12033-022-00582-1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ayipo YO, Alananzeh WA, Ahmad I et al (2022) Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2104376

    Article  PubMed  Google Scholar 

  46. Haque MA, Hossain MS, Ahmad I et al (2022) Unveiling chlorpyrifos mineralizing and tomato plant-growth activities of Enterobacter sp. strain HSTU-ASh6 using biochemical tests, field experiments, genomics, and in silico analyses. Front Microbiol. https://doi.org/10.3389/FMICB.2022.1060554/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ayipo YO, Yahaya SN, Babamale HF et al (2021) ß-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: computational approach. Turk J Biol 45:503–517. https://doi.org/10.3906/biy-2106-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ayipo YO, Ahmad I, Alananzeh W et al (2022) Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1). J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2153168

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank CUG, Gujarat, India, for providing spectral data. The authors are thankful to the Department of Chemistry of S.V. National Institute Technology, Surat, Gujarat, India, for providing all the facilities for the research work.

Author information

Authors and Affiliations

Authors

Contributions

ARZ: Conceptualization, methodology, writing original draft, and visualization. RGT: methodology and visualization. HNN: biological evaluation. AI: molecular dynamic simulation. HP, SJ, PK: supervision, writing review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Premlata Kumari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zala, A.R., Tiwari, R., Naik, H.N. et al. Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: molecular docking, MD simulation, ADMET and antidiabetic screening. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10683-x

Keywords

Navigation