Skip to main content
Log in

Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Post-translational modifications of proteins such as protein ubiquitination are crucial for regulating conformation, stability and localization of the modified protein. Ubiquitin-specific protease 2 (USP2), a multifunctional cysteine protease is reported to be a key regulator of ubiquitylation events in numerous oncogenic proteins e.g., fatty acid synthetase, Mdm2, EGFR, cyclin A1, and cyclin-D1, etc. Thus targeting USP2 is a promising strategy for cancer therapy. USP2 is characterized by a catalytic triad comprising of cysteine, histidine and aspartic acid residues. Five residues including three from the catalytic triad and two from outside of the catalytic triad have been reported as a catalytic site of USP2 that catalyze hydrolysis and stabilizes the oxyanion formed in the intermediate step of catalysis. Here, we report two more novel residues (L269 and Y558) on USP2 involved in the catalysis of Ubiquitin using computational alanine scanning (CAS) followed by molecular dynamic simulation studies. The results obtained from CAS were further validated by a highly reliable, time- and cost-effective SDS-PAGE-based kinetics assay using UBA52 which is a natural substrate of USP2. Our results showed that mutating L269 and Y558 significantly compromised the catalytic efficiency of USP2 in hydrolyzing UBA52 which can further be extended to rational drug design of USP2 selective inhibitors and to explore the catalytic sites of other USPs.

Graphical abstract

Two novel residues take part in catalytic activity of USP2 which were depicted by MD Simulations and were further validated by novel SDS-PAGE-based reliable time- and cost-effective kinetics assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A, Varshavsky A (2000) The ubiquitin system. Nat Med 6(10):1073–1081. https://doi.org/10.1038/80384

    Article  CAS  PubMed  Google Scholar 

  2. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458(7237):438–444. https://doi.org/10.1038/nature07960

    Article  CAS  PubMed  Google Scholar 

  3. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503

    Article  CAS  PubMed  Google Scholar 

  4. Harrigan JA, Jacq X, Martin NM, Jackson SP (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17(1):57–78. https://doi.org/10.1038/nrd.2017.152

    Article  CAS  PubMed  Google Scholar 

  5. Myung J, Kim KB, Crews CM (2001) The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21(4):245–273. https://doi.org/10.1002/med.1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat biotech 21(8):921–926. https://doi.org/10.1038/nbt849

    Article  CAS  Google Scholar 

  7. Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J proteome Res 7(10):4566–4576. https://doi.org/10.1021/pr800468j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. https://doi.org/10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  9. Edelmann MJ, Kessler BM (2008) Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: Emerging patterns and molecular principles. Biochim Biophys Acta-Mol Basis Dis 1782(12):809–816. https://doi.org/10.1016/j.bbadis.2008.08.010

    Article  CAS  PubMed Central  Google Scholar 

  10. Zhang W, Sulea T, Tao L, Cui Q, Purisima EO, Vongsamphanh R, Li Y (2011) Contribution of active site residues to substrate hydrolysis by USP2: insights into catalysis by ubiquitin specific proteases. Biochemistry 50(21):4775–4785. https://doi.org/10.1021/bi101958h

    Article  CAS  PubMed  Google Scholar 

  11. Renatus M, Parrado SG, D’Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Worpenberg S (2006) Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14(8):1293–1302. https://doi.org/10.1016/j.str.2006.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tencer AH, Liang Q, Zhuang Z (2016) Divergence in ubiquitin interaction and catalysis among the ubiquitin-specific protease family deubiquitinating enzymes. Biochemistry 55(33):4708–4719. https://doi.org/10.1021/acs.biochem.6b00033

    Article  CAS  PubMed  Google Scholar 

  13. Stevenson LF, Sparks A, Allende NV, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26(4):976–986. https://doi.org/10.1038/sj.emboj.7601567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Signoretti S (2004) The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5(3):253–261. https://doi.org/10.1016/S1535-6108(04)00055-8

    Article  CAS  PubMed  Google Scholar 

  15. Buckley D, Duke G, Heuer TS, O’Farrell M, Wagman AS, McCulloch W, Kemble G (2017) Fatty acid synthase–modern tumor cell biology insights into a classical oncology target. Pharmacol Ther 177:23–31. https://doi.org/10.1016/j.pharmthera.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  16. Shan J, Zhao W, Gu W (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36(3):469–476. https://doi.org/10.1016/j.molcel.2009.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, Hall MD (2016) Small molecule inhibition of the ubiquitin-specific protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biolog Chem 291(47):24628–24640. https://doi.org/10.1074/jbc.M116.738567

    Article  CAS  Google Scholar 

  18. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58. https://doi.org/10.1038/nrd.2018.168

    Article  CAS  PubMed  Google Scholar 

  19. Chuang SJ, Cheng SC, Tang HC, Sun CY, Chou CY (2018) 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep 8(1):3102. https://doi.org/10.1038/s41598-018-21476-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang ZL, Xie W, Zhu M, Zhou H (2017) Development of a highly reliable assay for ubiquitin-specific protease 2 inhibitors. Bioorg Med Chem Lett 27(17):4015–4018. https://doi.org/10.1016/j.bmcl.2017.07.059

    Article  CAS  PubMed  Google Scholar 

  21. Rehman AU, Rafiq H, Rahman MU, Li J, Liu H, Luo S, Chen HF (2019) Gain-of-function SHP2 E76Q mutant rescuing autoinhibition mechanism associated with juvenile myelomonocytic leukemia. J Chem Inf Model 59(7):3229–3239. https://doi.org/10.1021/acs.jcim.9b00353

    Article  CAS  PubMed  Google Scholar 

  22. Riaz M, Rehman AU, Shah SA, Rafiq H, Lu S, Qiu Y, Wadood A (2021) Predicting Multi-Interfacial Binding Mechanisms of NLRP3 and ASC Pyrin Domains in Inflammasome Activation. ACS Chem Neurosci 12(4):603–612. https://doi.org/10.1021/acschemneuro.0c00519

    Article  CAS  PubMed  Google Scholar 

  23. Salomon RF, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3(2):198–210. https://doi.org/10.1021/acs.jcim.0c00613

    Article  CAS  Google Scholar 

  24. Zwanzig R (1973) Nonlinear generalized Langevin equations. J Stat Phys 9(3):215–220. https://doi.org/10.1007/BF01008729

    Article  Google Scholar 

  25. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  26. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  27. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  28. Salomon RF, Case DA, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs: Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  Google Scholar 

  29. Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs 1. Generalized born. J Chem Theory Comput 8(5):1542–1555. https://doi.org/10.1021/ct200909j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z, Liu Y, Zhang J, Ullah S, Kang N, Zhao Y, Zhou H (2020) Benzothiophene-2-carboxamide derivatives as SENPs inhibitors with selectivity within SENPs family. Eur J Med Chem 204:112553. https://doi.org/10.1016/j.ejmech.2020.112553

    Article  CAS  PubMed  Google Scholar 

  31. Reverter D, Lima CD (2006) Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol 13(12):1060–1068. https://doi.org/10.1038/nsmb1168

    Article  CAS  PubMed  Google Scholar 

  32. Junaid M, Khan MT, Malik SI, Wei DQ (2018) Insights into the mechanisms of the pyrazinamide resistance of three pyrazinamidase mutants N11K, P69T, and D126N. J Chem Inf Model 59(1):498–508. https://doi.org/10.1021/acs.jcim.8b00525

    Article  CAS  PubMed  Google Scholar 

  33. Khan A, Zia T, Suleman M, Khan T, Ali SS, Abbasi AA, Wei DQ (2021) Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: an insight from structural data. J Cell Physiol 236(10):7045–7057. https://doi.org/10.1002/jcp.30367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The principal author is grateful to China Scholarship Council (CSC) for funding this project, School of Pharmacy, SJTU, China and CADD lab, Abdul Wali Khan University, Pakistan for providing all relevant facilities. We are grateful to Professor Huchen Zhou for providing all the technical support in project design and facilities to conduct kinetics studies at her lab.

Funding

The lead author Shafi Ullah acknowledges China Scholarship Council (CSC) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shafi Ullah or Abdul Wadood.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with anyone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1563 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Junaid, M., Liu, Y. et al. Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design. Mol Divers 27, 1323–1332 (2023). https://doi.org/10.1007/s11030-022-10499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10499-1

Keywords

Navigation