Skip to main content

Advertisement

Log in

Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The ubiquitination process refers to the classification of intracellular proteins by ubiquitin molecules under the action of a series of special enzymes (ubiquitin-activating enzymes, ligases, conjugating enzymes, etc.), and selecting target protein molecules for specific modification. The process of ubiquitination indicates that ubiquitination plays an important role in protein localization, metabolism, regulation, and degradation. At present, the development of novel, high-efficiency, and specific USP7 small-molecule inhibitors and the research on the mechanism of action of these inhibitors to specifically recognize the USP7 enzyme are low in fuel. In this review, the activation process of deubiquitinase USP7 is elaborated, and the small molecule inhibitors are divided into three sites of action according to the different sites of action in the catalytic domain of USP7 and the mechanism of these small molecule compounds inhibiting the activation process of USP7 are dissected. At the same time, the full-length structure of USP7 and the design strategy of representative USP7 inhibitors are briefly described. In addition, we summarize the characteristics of the spatial structure and mechanism of action of each action site and discuss the limiting factors of USP7 inhibitor development. This review may promote small-molecule compounds to generate novel high-efficiency and specific USP7 inhibitors based on backbone structure modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Kessler, B.M., Fortunati, E., Melis, M., Pals, C.E., Clevers, H., and Maurice, M.M., J. Proteome Res., 2007, vol. 6, pp. 4163–4172. https://doi.org/10.1021/pr0702161

    Article  CAS  PubMed  Google Scholar 

  2. Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C., and Ciechanover, A., Int. J. Biochem. Cell Biol., 2016, vol. 79, pp. 403–418. https://doi.org/10.1016/j.biocel.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  3. Ma, J., Martin, J.D., Xue, Y., Lor, L.A., Kennedy-Wilson, K.M., Sinnamon, R.H., Ho, T.F., Zhang, G., Schwartz, B., Tummino, P.J., and Lai, Z., Arch. Biochem. Biophys., 2010, vol. 503, pp. 207–212. https://doi.org/10.1016/j.abb.2010.08.020

    Article  CAS  PubMed  Google Scholar 

  4. Hu, M., Gu, L., Li, M., Jeffrey, P.D., Gu, W., and Shi, Y., PLoS Biol., 2006, vol. 4, p. e27. https://doi.org/10.1371/journal.pbio.0040027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheng, Y., Saridakis, V., Sarkari, F., Duan, S., Wu, T., Arrowsmith, C.H., and Frappier, L., Nat. Struct. Mol. Biol., 2006, vol. 13, pp. 285–291. https://doi.org/10.1038/nsmb1067

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Q., Ma, S., Song, N., Li, X., Liu, L., Yang, S., Ding, X., Shan, L., Zhou, X., Su, D., Wang, Y., Zhang, Q., Liu, X., Yu, N., Zhang, K., Shang, Y., Yao, Z., and Shi, L., J. Clin. Invest., 2016, vol. 126, pp. 2205–2220. https://doi.org/10.1172/jci85747

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carrà, G., Panuzzo, C., Torti, D., Parvis, G., Crivellaro, S., Familiari, U., Volante, M., Morena, D., Lingua, M.F., Brancaccio, M., Guerrasio, A., Pandolfi, P.P., Saglio, G., Taulli, R., and Morotti, A., Oncotarget, 2017, vol. 8, pp. 35508–35522. https://doi.org/10.18632/oncotarget.16348

    Article  PubMed  PubMed Central  Google Scholar 

  8. Song, M.S., Salmena, L., Carracedo, A., Egia, A., Lo-Coco, F., Teruya-Feldstein, J., and Pandolfi, P.P., Nature, 2008, vol. 455, pp. 813–817. https://doi.org/10.1038/nature07290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, G.Y., Lin, Z.W., Lu, C.L., Gu, J., Yuan, Y.F., Xu, F.K., Liu, R.H., Ge, D., and Ding, J.Y., Tumour Biol., 2015, vol. 36, pp. 1721–1729. https://doi.org/10.1007/s13277-014-2773-4

    Article  CAS  PubMed  Google Scholar 

  10. Valles, G.J., Bezsonova, I., Woodgate, R., and Ashton, N.W., Front. Cell Dev. Biol., 2020, vol. 8, p. 717. https://doi.org/10.3389/fcell.2020.00717

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yi, L., Cui, Y., Xu, Q., and Jiang, Y., Oncol. Rep., 2016, vol. 36, pp. 2935–2945. https://doi.org/10.3892/or.2016.5099

    Article  CAS  PubMed  Google Scholar 

  12. Giovinazzi, S., Morozov, V.M., Summers, M.K., Reinhold, W.C., and Ishov, A.M., Cell Death Differ., 2013, vol. 20, pp. 721–731. https://doi.org/10.1038/cdd.2012.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reverdy, C., Conrath, S., Lopez, R., Planquette, C., Atmanene, C., Collura, V., Harpon, J., Battaglia, V., Vivat, V., Sippl, W., and Colland, F., Chem. Biol., 2012, vol. 19, pp. 467–477. https://doi.org/10.1016/j.chembiol.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  14. Jagannathan, M., Nguyen, T., Gallo, D., Luthra, N., Brown, G.W., Saridakis, V., and Frappier, L., Mol. Cell Biol., 2014, vol. 34, pp. 132–145. https://doi.org/10.1128/mcb.00639-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Felle, M., Joppien, S., Németh, A., Diermeier, S., Thalhammer, V., Dobner, T., Kremmer, E., Kappler, R., and Längst, G., Nucleic Acids Res., 2011, vol. 39, pp. 8355–8365. https://doi.org/10.1093/nar/gkr528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holowaty, M.N., Sheng, Y., Nguyen, T., Arrowsmith, C., and Frappier, L., J. Biol. Chem., 2003, vol. 278, pp. 47753–47761. https://doi.org/10.1074/jbc.M307200200

    Article  CAS  PubMed  Google Scholar 

  17. Saridakis, V., Sheng, Y., Sarkari, F., Holowaty, M.N., Shire, K., Nguyen, T., Zhang, R.G., Liao, J., Lee, W., Edwards, A.M., Arrowsmith, C.H., and Frappier, L., Mol. Cell, 2005, vol. 18, pp. 25–36. https://doi.org/10.1016/j.molcel.2005.02.029

    Article  CAS  PubMed  Google Scholar 

  18. Zapata, J.M., Pawlowski, K., Haas, E., Ware, C.F., Godzik, A., and Reed, J.C., J. Biol. Chem., 2001, vol. 276, pp. 24242–24252. https://doi.org/10.1074/jbc.M100354200

    Article  CAS  PubMed  Google Scholar 

  19. Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R., Cell, 2005, vol. 123, pp. 773–786. https://doi.org/10.1016/j.cell.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  20. Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Cohen, R.E., and Shi, Y., Cell, 2002, vol. 111, pp. 1041–1054. https://doi.org/10.1016/s0092-8674(02)01199-6

    Article  CAS  PubMed  Google Scholar 

  21. Sarkari, F., La Delfa, A., Arrowsmith, C.H., Frappier, L., Sheng, Y., and Saridakis, V., J. Mol. Biol., 2010, vol. 402, pp. 825–837. https://doi.org/10.1016/j.jmb.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  22. Jagannathan, M., Nguyen, T., Gallo, D., Luthra, N., Brown, G.W., Saridakis, V., and Frappiera, L., Mol. Cell. Biol., 2014, vol. 34, pp. 132–145. https://doi.org/10.1128/MCB.00639-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cummins, J.M., Rago, C., Kohli, M., Kinzler, K.W., Lengauer, C., and Vogelstein, B., Nature, 2004, vol. 428, p. 1. https://doi.org/10.1038/nature02501

    Article  PubMed  Google Scholar 

  24. Li, M., Chen, D., Shiloh, A., Luo, J., Nikolaev, A.Y., Qin, J., and Gu, W., Nature, 2002, vol. 416, pp. 648–653. https://doi.org/10.1038/nature737

    Article  CAS  PubMed  Google Scholar 

  25. Li, M., Brooks, C.L., Kon, N., and Gu, W., Mol. Cell, 2004, vol. 13, pp. 879–886. https://doi.org/10.1016/s1097-2765(04)00157-1

    Article  CAS  PubMed  Google Scholar 

  26. Meulmeester, E., Maurice, M.M., Boutell, C., Teunisse, A.F., Ovaa, H., Abraham, T.E., Dirks, R.W., and Jochemsen, A.G., Mol. Cell, 2005, vol. 18, pp. 565–576. https://doi.org/10.1016/j.molcel.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  27. Tavana, O., and Gu, W., J. Mol. Cell Biol., 2017, vol. 9, pp. 45–52. https://doi.org/10.1093/jmcb/mjw049

    Article  CAS  PubMed  Google Scholar 

  28. Jagannathan, M., Sakwe, A.M., Nguyen, T., and Frappier, L., J. Cell Sci., 2012, vol. 125, pp. 133–143. https://doi.org/10.1242/jcs.089938

    Article  CAS  PubMed  Google Scholar 

  29. Nishiyama, A., Frappier, L., and Méchali, M., Genes Dev., 2011, vol. 25, pp. 165–175. https://doi.org/10.1101/gad.614411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, S., and Frappier, L., J. Virol., 2009, vol. 83, pp. 11704–11714. https://doi.org/10.1128/jvi.00931-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faesen, A.C., Dirac, A.M.G., Shanmugham, A., Ovaa, H., Perrakis, A., and Sixma, T.K., Mol. Cell, 2011, vol. 44, pp. 147–159. https://doi.org/10.1016/j.molcel.2011.06.034

    Article  CAS  PubMed  Google Scholar 

  32. Holowaty, M.N., Sheng, Y., Nguyen, T., Arrowsmith, C., and Frappier, L., J. Biol. Chem., 2003, vol. 278, pp. 47753–47761. https://doi.org/10.1074/jbc.M307200200

    Article  CAS  PubMed  Google Scholar 

  33. Molland, K., Zhou, Q., and Mesecar, A.D., Acta Crystallogr. Sect. F: Struct. Biol. Commun., 2014, vol. 70, pp. 283–287. https://doi.org/10.1107/S2053230X14002519

    Article  CAS  Google Scholar 

  34. Srivastava, M., Suri, C., Singh, M., Mathur, R., and Asthana, S., Oncotarget, 2018, vol. 9, pp. 34289–34305.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pozhidaeva, A., Valles, G., Wang, F., Wu, J., Sterner, D.E., Nguyen, P., Weinstock, J., Kumar, K.G.S., Kanyo, J., Wright, D., and Bezsonova, I., Cell Chem. Biol., 2017, vol. 24, pp. 1501–1512. e1505. https://doi.org/10.1016/j.chembiol.2017.09.004

  36. Pfoh, R., Lacdao, I.K., Georges, A.A., Capar, A., Zheng, H., Frappier, L., and Saridakis, V., PLoS Pathog., 2015, vol. 11, p. e1004950. https://doi.org/10.1371/journal.ppat.1004950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Komander, D., Clague, M.J., and Urbé, S., Nat. Rev. Mol. Cell Biol., 2009, vol. 10, pp. 550–563. https://doi.org/10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, X., Ménard, R., and Sulea, T., Proteins, 2007, vol. 69, pp. 1–7. https://doi.org/10.1002/prot.21546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, J., Yang, H., Fang, J., Ma, L., Gong, R., Wang, P., Li, Z., and Xu, Y., Nat. Commun., 2015, vol. 6, p. 7023. https://doi.org/10.1038/ncomms8023

    Article  CAS  PubMed  Google Scholar 

  40. Ma, H., Chen, H., Guo, X., Wang, Z., Sowa Mathew, E., Zheng, L., Hu, S., Zeng, P., Guo, R., Diao, J., Lan, F., Harper, J.W., Shi Yujiang, G., Xu, Y., and Shi, Y., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 4828–4833. https://doi.org/10.1073/pnas.1116349109

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Z.M., Rothbart, S.B., Allison, D.F., Cai, Q., Harrison, J.S., Li, L., Wang, Y., Strahl, B.D., Wang, G.G., and Song, J., Cell Rep., 2015, vol. 12, pp. 1400–1406. https://doi.org/10.1016/j.celrep.2015.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Canning, M., Boutell, C., Parkinson, J., and Everett, R.D., J. Biol. Chem., 2004, vol. 279, pp. 38160–38168. https://doi.org/10.1074/jbc.M402885200

    Article  CAS  PubMed  Google Scholar 

  43. Kim, R.Q., van Dijk, W.J., and Sixma, T.K., J. Struct. Biol., 2016, vol. 195, pp. 11–18. https://doi.org/10.1016/j.jsb.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  44. Rougé, L., Bainbridge, T.W., Kwok, M., Tong, R., Di Lello, P., Wertz, I.E., Maurer, T., Ernst, J.A., and Murray, J., Structure, 2016, vol. 24, pp. 1335–1345. https://doi.org/10.1016/j.str.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  45. Faesen, A.C., Dirac, A.M., Shanmugham, A., Ovaa, H., Perrakis, A., and Sixma, T.K., Mol Cell, 2011, vol. 44, pp. 147–159. https://doi.org/10.1016/j.molcel.2011.06.034

    Article  CAS  PubMed  Google Scholar 

  46. Kim, R.Q., Geurink, P.P., Mulder, M.P.C., Fish, A., Ekkebus, R., El Oualid, F., van Dijk, W.J., van Dalen, D., Ovaa, H., van Ingen, H., and Sixma, T.K., Nat. Commun., 2019, vol. 10, p. 231. https://doi.org/10.1038/s41467-018-08231-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Knaap, J.A., Kumar, B.R., Moshkin, Y.M., Langenberg, K., Krijgsveld, J., Heck, A.J., Karch, F., and Verrijzer, C.P., Mol. Cell, 2005, vol. 17, pp. 695–707. https://doi.org/10.1016/j.molcel.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  48. Sarkari, F., Sanchez-Alcaraz, T., Wang, S., Holowaty, M.N., Sheng, Y., and Frappier, L., PLoS Pathog., 2009, vol. 5, p. e1000624. https://doi.org/10.1371/journal.ppat.1000624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu, Q., Sharma, N., He, J., Wani, G., and Wani, A.A., Cell Cycle, 2015, vol. 14, pp. 1413–1425. https://doi.org/10.1080/15384101.2015.1007785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. An, L., Jiang, Y., Ng, H.H., Man, E.P., Chen, J., Khoo, U.S., Gong, Q., and Huen, M.S., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. e2872–e2881. https://doi.org/10.1073/pnas.1616602114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biswas, K., Philip, S., Yadav, A., Martin, B.K., Burkett, S., Singh, V., Babbar, A., North, S.L., Chang, S., and Sharan, S.K., Nat. Commun., 2018, vol. 9, p. 537. https://doi.org/10.1038/s41467-018-03020-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alonso-de Vega, I., Martín, Y., and Smits, V.A., Cell Cycle, 2014, vol. 13, pp. 3921–3926. https://doi.org/10.4161/15384101.2014.973324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Faustrup, H., Bekker-Jensen, S., Bartek, J., Lukas, J., and Mailand, N., J. Cell Biol., 2009, vol. 184, pp. 13–19. https://doi.org/10.1083/jcb.200807137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Waters, L.S., Minesinger, B.K., Wiltrout, M.E., D’Souza, S., Woodruff, R.V., and Walker, G.C., Microbiol. Mol. Biol. Rev., 2009, vol. 73, pp. 134–154. https://doi.org/10.1128/mmbr.00034-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qian, J., Pentz, K., Zhu, Q., Wang, Q., He, J., Srivastava, A.K., and Wani, A.A., Oncogene, 2015, vol. 34, pp. 4791–4796. https://doi.org/10.1038/onc.2014.394

    Article  CAS  PubMed  Google Scholar 

  56. Jäger, W., Santag, S., Weidner-Glunde, M., Gellermann, E., Kati, S., Pietrek, M., Viejo-Borbolla, A., and Schulz, T.F., J. Virol., 2012, vol. 86, pp. 6745–6757. https://doi.org/10.1128/jvi.06840-11

    Article  PubMed  PubMed Central  Google Scholar 

  57. Salsman, J., Jagannathan, M., Paladino, P., Chan, P.K., Dellaire, G., Raught, B., and Frappier, L., J. Virol., 2012, vol. 86, pp. 806–820. https://doi.org/10.1128/jvi.05442-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ali, A., Raja, R., Farooqui, S.R., Ahmad, S., and Banerjea, A.C., Biochem. J., 2017, vol. 474, pp. 1653–1668. https://doi.org/10.1042/bcj20160304

    Article  CAS  PubMed  Google Scholar 

  59. de Bie, P., Zaaroor-Regev, D., and Ciechanover, A., Biochem. Biophys. Res. Commun., 2010, vol. 400, pp. 389–395. https://doi.org/10.1016/j.bbrc.2010.08.082

    Article  CAS  PubMed  Google Scholar 

  60. Maertens, G.N., El Messaoudi-Aubert, S., Elderkin, S., Hiom, K., and Peters, G., EMBO J., 2010, vol. 29, pp. 2553–2565. https://doi.org/10.1038/emboj.2010.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lecona, E., Narendra, V., and Reinberg, D., Mol. Cell Biol., 2015, vol. 35, pp. 1157–1168. https://doi.org/10.1128/mcb.01197-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dar, A., Shibata, E., and Dutta, A., Mol. Cell Biol., 2013, vol. 33, pp. 3309–3320. https://doi.org/10.1128/mcb.00358-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ding, X., Jiang, W., Zhou, P., Liu, L., Wan, X., Yuan, X., Wang, X., Chen, M., Chen, J., Yang, J., Kong, C., Li, B., Peng, C., Wong, C.C., Hou, F., and Zhang, Y., PLoS One, 2015, vol. 10, p. e0145023. https://doi.org/10.1371/journal.pone.0145023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamaguchi, L., Nishiyama, A., Misaki, T., Johmura, Y., Ueda, J., Arita, K., Nagao, K., Obuse, C., and Nakanishi, M., Sci. Rep., 2017, vol. 7, p. 55. https://doi.org/10.1038/s41598-017-00136-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, L., Kumar, S., Dahiya, S., Wang, F., Wu, J., Newick, K., Han, R., Samanta, A., Beier, U.H., Akimova, T., Bhatti, T.R., Nicholson, B., Kodrasov, M.P., Agarwal, S., Sterner, D.E., Gu, W., Weinstock, J., Butt, T.R., Albelda, S.M., and Hancock, W.W., EBioMedicine, 2016, vol. 13, pp. 99–112. https://doi.org/10.1016/j.ebiom.2016.10.018

    Article  PubMed  PubMed Central  Google Scholar 

  66. Palazón-Riquelme, P., Worboys, J.D., Green, J., Valera, A., Martín-Sánchez, F., Pellegrini, C., Brough, D., and López-Castejón, G., EMBO Rep., 2018, vol. 19, p. e44766. https://doi.org/10.15252/embr.201744766

  67. Zhang, W. and Sidhu, S.S., Nat. Chem. Biol., 2018, vol. 14, pp. 110–111. https://doi.org/10.1038/nchembio.2557

    Article  CAS  PubMed  Google Scholar 

  68. Turnbull, A.P., Ioannidis, S., Krajewski, W.W., Pinto-Fernandez, A., Heride, C., Martin, A.C.L., Tonkin, L.M., Townsend, E.C., Buker, S.M., Lancia, D.R., Caravella, J.A., Toms, A.V., Charlton, T.M., Lahdenranta, J., Wilker, E., Follows, B.C., Evans, N.J., Stead, L., Alli, C., Zarayskiy, V.V., Talbot, A.C., Buckmelter, A.J., Wang, M., McKinnon, C.L., Saab, F., McGouran, J.F., Century, H., Gersch, M., Pittman, M.S., Marshall, C.G., Raynham, T.M., Simcox, M., Stewart, L.M.D., McLoughlin, S.B., Escobedo, J.A., Bair, K.W., Dinsmore, C.J., Hammonds, T.R., Kim, S., Urbé, S., Clague, M.J., Kessler, B.M., and Komander, D., Nature, 2017, vol. 550, pp. 481–486. https://doi.org/10.1038/nature24451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O'Dowd, C.R., Helm, M.D., Rountree, J.S.S., Flasz, J.T., Arkoudis, E., Miel, H., Hewitt, P.R., Jordan, L., Barker, O., Hughes, C., Rozycka, E., Cassidy, E., McClelland, K., Odrzywol, E., Page, N., Feutren-Burton, S., Dvorkin, S., Gavory, G., and Harrison, T., ACS Med. Chem. Lett., 2018, vol. 9, pp. 238–243. https://doi.org/10.1021/acsmedchemlett.7b00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, M., Liu, S., Chen, H., Zhou, X., Zhou, J., Zhou, S., Yuan, H., Xu, Q.L., Liu, J., Cheng, K., Sun, H., Wang, Y., Chen, C., and Wen, X., Eur. J. Med. Chem., 2020, vol. 199, p. 112279. https://doi.org/10.1016/j.ejmech.2020.112279

    Article  CAS  PubMed  Google Scholar 

  71. Leger, P.R., Hu, D.X., Biannic, B., Bui, M., Han, X., Karbarz, E., Maung, J., Okano, A., Osipov, M., Shibuya, G.M., Young, K., Higgs, C., Abraham, B., Bradford, D., Cho, C., Colas, C., Jacobson, S., Ohol, Y.M., Pookot, D., Rana, P., Sanchez, J., Shah, N., Sun, M., Wong, S., Brockstedt, D.G., Kassner, P.D., Schwarz, J.B., and Wustrow, D.J., J. Med. Chem., 2020, vol. 63, pp. 5398–5420. https://doi.org/10.1021/acs.jmedchem.0c00245

    Article  CAS  PubMed  Google Scholar 

  72. Gavory, G., O’Dowd, C.R., Helm, M.D., Flasz, J., Arkoudis, E., Dossang, A., Hughes, C., Cassidy, E., McClelland, K., Odrzywol, E., Page, N., Barker, O., Miel, H., and Harrison, T., Nat. Chem. Biol., 2018, vol. 14, pp. 118–125. https://doi.org/10.1038/nchembio.2528

    Article  CAS  PubMed  Google Scholar 

  73. Lamberto, I., Liu, X., Seo, H.S., Schauer, N.J., Iacob, R.E., Hu, W., Das, D., Mikhailova, T., Weisberg, E.L., Engen, J.R., Anderson, K.C., Chauhan, D., Dhe-Paganon, S., and Buhrlage, S.J., Cell Chem. Biol., 2017, vol. 24, pp. 1490–1500. e1411. https://doi.org/10.1016/j.chembiol.2017.09.003

  74. Engström, O., Belda, O., Kullman-Magnusson, M., Rapp, M., Böhm, K., Paul, R., Henderson, I., Derbyshire, D., Karlström, S., Parkes, K.E.B., and Zhao, H., Bioorg. Med. Chem. Lett., 2020, vol. 30, p. 127471. https://doi.org/10.1016/j.bmcl.2020.127471

    Article  CAS  PubMed  Google Scholar 

  75. Kategaya, L., Di Lello, P., Rougé, L., Pastor, R., Clark, K.R., Drummond, J., Kleinheinz, T., Lin, E., Upton, J.P., Prakash, S., Heideker, J., McCleland, M., Ritorto, M.S., Alessi, D.R., Trost, M., Bainbridge, T.W., Kwok, M.C.M., Ma, T.P., Stiffler, Z., Brasher, B., Tang, Y., Jaishankar, P., Hearn, B.R., Renslo, A.R., Arkin, M.R., Cohen, F., Yu, K., Peale, F., Gnad, F., Chang, M.T., Klijn, C., Blackwood, E., Martin, S.E., Forrest, W.F., Ernst, J.A., Ndubaku, C., Wang, X., Beresini, M.H., Tsui, V., Schwerdtfeger, C., Blake, R.A., Murray, J., Maurer, T., and Wertz, I.E., Nature, 2017, vol. 550, pp. 534–538. https://doi.org/10.1038/nature24006

    Article  CAS  PubMed  Google Scholar 

  76. Di Lello, P., Pastor, R., Murray, J.M., Blake, R.A., Cohen, F., Crawford, T.D., Drobnick, J., Drummond, J., Kategaya, L., Kleinheinz, T., Maurer, T., Rougé, L., Zhao, X., Wertz, I., Ndubaku, C., and Tsui, V., J. Med. Chem., 2017, vol. 60, pp. 10056–10070. https://doi.org/10.1021/acs.jmedchem.7b01293

    Article  CAS  PubMed  Google Scholar 

  77. Weinstock, J., Wu, J., Cao, P., Kingsbury, W.D., McDermott, J.L., Kodrasov, M.P., McKelvey, D.M., Suresh Kumar, K.G., Goldenberg, S.J., Mattern, M.R., and Nicholson, B., ACS Med. Chem. Lett., 2012, vol. 3, pp. 789–792. https://doi.org/10.1021/ml200276j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chauhan, D., Tian, Z., Nicholson, B., Kumar, K.G., Zhou, B., Carrasco, R., McDermott, J.L., Leach, C.A., Fulcinniti, M., Kodrasov, M.P., Weinstock, J., Kingsbury, W.D., Hideshima, T., Shah, P.K., Minvielle, S., Altun, M., Kessler, B.M., Orlowski, R., Richardson, P., Munshi, N., and Anderson, K.C., Cancer Cell, 2012, vol. 22, pp. 345–358. https://doi.org/10.1016/j.ccr.2012.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Altun, M., Kramer, H.B., Willems, L.I., McDermott, J.L., Leach, C.A., Goldenberg, S.J., Kumar, K.G., Konietzny, R., Fischer, R., Kogan, E., Mackeen, M.M., McGouran, J., Khoronenkova, S.V., Parsons, J.L., Dianov, G.L., Nicholson, B., and Kessler, B.M., Chem. Biol., 2011, vol. 18, pp. 1401–1412. https://doi.org/10.1016/j.chembiol.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  80. Pozhidaeva, A., Valles, G., Wang, F., Wu, J., Sterner, D.E., Nguyen, P., Weinstock, J., Kumar, K.G.S., Kanyo, J., Wright, D., and Bezsonova, I., Cell Chem. Biol., 2017, vol. 24, pp. 1501–1512. e1505. https://doi.org/10.1016/j.chembiol.2017.09.004

  81. Chen, C., Song, J., Wang, J., Xu, C., Chen, C., Gu, W., Sun, H., and Wen, X., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 845–849. https://doi.org/10.1016/j.bmcl.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  82. Colombo, M., Vallese, S., Peretto, I., Jacq, X., Rain, J.C., Colland, F., and Guedat, P., ChemMedChem, 2010, vol. 5, pp. 552–558. https://doi.org/10.1002/cmdc.200900409

    Article  CAS  PubMed  Google Scholar 

  83. Colland, F., Formstecher, E., Jacq, X., Reverdy, C., Planquette, C., Conrath, S., Trouplin, V., Bianchi, J., Aushev, V.N., Camonis, J., Calabrese, A., Borg-Capra, C., Sippl, W., Collura, V., Boissy, G., Rain, J.C., Guedat, P., Delansorne, R., and Daviet, L., Mol. Cancer Ther., 2009, vol. 8, pp. 2286–2295. https://doi.org/10.1158/1535-7163.Mct-09-0097

    Article  CAS  PubMed  Google Scholar 

  84. Ching, W., Koyuncu, E., Singh, S., Arbelo-Roman, C., Hartl, B., Kremmer, E., Speiseder, T., Meier, C., and Dobner, T., PLoS Pathog., 2013, vol. 9, p. e1003273. https://doi.org/10.1371/journal.ppat.1003273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamaguchi, M., Miyazaki, M., Kodrasov, M.P., Rotinsulu, H., Losung, F., Mangindaan, R.E., de Voogd, N.J., Yokosawa, H., Nicholson, B., and Tsukamoto, S., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 3884–3886. https://doi.org/10.1016/j.bmcl.2013.04.066

    Article  CAS  PubMed  Google Scholar 

  86. Tanokashira, N., Kukita, S., Kato, H., Nehira, T., Angkouw, E.D., Mangindaan, R.E.P., de Voogd, N.J., and Tsukamoto, S., Tetrahedron, 2016, vol. 72, pp. 5530–5540. https://doi.org/10.1016/j.tet.2016.07.045

    Article  CAS  Google Scholar 

  87. Afifi, A.H., Kagiyama, I., El-Desoky, A.H., Kato, H., Mangindaan, R.E.P., de Voogd, N.J., Ammar, N.M., Hifnawy, M.S., and Tsukamoto, S., J. Nat. Prod., 2017, vol. 80, pp. 2045–2050. https://doi.org/10.1021/acs.jnatprod.7b00184

    Article  CAS  PubMed  Google Scholar 

  88. Jing, B., Liu, M., Yang, L., Cai, H.Y., Chen, J.B., Li, Z.X., Kou, X., Wu, Y.Z., Qin, D.J., Zhou, L., Jin, J., Lei, H., Xu, H.Z., Wang, W.W., and Wu, Y.L., Acta Pharmacol. Sin., 2018, vol. 39, pp. 492–498. https://doi.org/10.1038/aps.2017.119

    Article  CAS  PubMed  Google Scholar 

  89. Fan, Y.H., Cheng, J., Vasudevan, S.A., Dou, J., Zhang, H., Patel, R.H., Ma, I.T., Rojas, Y., Zhao, Y., Yu, Y., Zhang, H., Shohet, J.M., Nuchtern, J.G., Kim, E.S., and Yang, J., Cell Death Dis., 2013, vol. 4, p. e867. https://doi.org/10.1038/cddis.2013.400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (no. 82020108030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Ke, H. Liu or Q. Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

The work has no studies involving humans or animals as subjects of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, L., Wang, H., Yu, F. et al. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. Russ J Bioorg Chem 49, 198–219 (2023). https://doi.org/10.1134/S1068162023020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023020073

Keywords:

Navigation