Skip to main content

Advertisement

Log in

Designing of potent anti-diabetic molecules by targeting SIK2 using computational approaches

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is one of the major health problems worldwide. WHO have estimated that 439 million people may have DM by the year 2030. Several classes of drugs such as sulfonylureas, meglitinides, thiazolidinediones etc. are available to manage this disease, however, there is no cure for this disease. Salt inducible kinase 2 (SIK2) is expressed several folds in adipose tissue than in normal tissues and thus SIK2 is one of the attractive targets for DM treatment. SIK2 inhibition improves glucose homeostasis. Several analogues have been reported and experimentally proven against SIK for DM treatment. But, identifying potential SIK2 inhibitors with improved efficacy and good pharmacokinetic profiles will be helpful for the effective treatment of DM. The objective of the present study is to identify selective SIK2 inhibitors with good pharmacokinetic profiles. Due to the unavailability of SIK2 structure, the modeled structure of SIK2 will be an important to understand the atomic level of SIK2 inhibitors in the binding site pocket. In this study, different molecular modeling studies such as Homology Modeling, Molecular Docking, Pharmacophore-based virtual screening, MD simulations, Density Functional Theory calculations and WaterMap analysis were performed to identify potential SIK2 inhibitors. Five molecules from different databases such as Binding_4067, TosLab_837067, NCI_349155, Life chemicals_ F2565-0113, Enamine_7623111186 molecules were identified as possible SIK2 inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ADME:

Absorption distribution metabolism excretion

CAMK:

Calcium/calmodulin kinase

CREB:

CAMP-response element binding protein

CRTCs:

CREB-regulated transcriptional coactivators

CADD:

Computer-aided drug design

DM:

Diabetes mellitus

DFT:

Density functional theory

DOPE:

Discrete optimized protein energy

GCMC:

Grand canonical Monte Carlo

GCAP:

Grand canonical alchemical perturbation

GPCR:

G protein-coupled receptor

GROMACS:

GROningen MAchine for chemical simulations

HDACs:

Histone deacetylases

HTVS:

High-throughput virtual screening

HOMO:

Highest occupied molecular orbital

IST:

Inhomogeneous solvation theory

LKB1:

Liver kinase B1

LUMO:

Lowest unoccupied molecular orbital

MDS:

Molecular dynamic simulation

MDCK:

Madin-Darby canine kidney

MM-PBSA:

Molecular mechanics Poisson-Boltzmann surface area

NVT:

Constant temperature, constant volume

NPT:

Constant temperature, constant pressure

OPLS3e:

Optimized potentials for liquid simulations

PDB:

Protein data bank

ProSA:

Protein structural analysis

PBF:

Poisson Boltzmann

SGLT2:

Sodium-glucose co-transporter-2 finite

SP:

Standard precision

SPC:

Simple point charge

STM:

Single trajectory method

T2DM:

Type 2 Diabetes Mellitus

WHO:

World Health Organization

SIK2:

Salt inducible kinase 2

WM:

WaterMap

XP:

Extra precision

References

  1. Stumvol M, Goldstein BJ, Van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365(9467):1333–1346. https://doi.org/10.1016/S0140-6736(05)61032-X

    Article  CAS  Google Scholar 

  2. Lee PG, Halter JB (2017) The Pathophysiology of hyperglycemia in older adults: clinical considerations. Diabetes Care 40(4):444–452. https://doi.org/10.2337/dc16-1732

    Article  PubMed  Google Scholar 

  3. Ryu TY, Park J, Scherer PE (2014) Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 38(5):330–336. https://doi.org/10.4093/dmj.2014.38.5.330

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tachkov K, Mitov K, Koleva Y, Mitkova Z, Kamusheva M, Dimitrova M, Petkova V, Savova A, Doneva M, Tcarukciev D, Valov V, Angelova G, Manova M, Petrova G (2020) Life expectancy and survival analysis of patients with diabetes compared to the non diabetic population in Bulgaria. PLOS ONE 15(5):e0232815. https://doi.org/10.1371/journal.pone.0232815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarwar N, Gao P, Seshasai GR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  PubMed  Google Scholar 

  6. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, Imperatore G, Marcovina S, Pettitt DJ, Pihoker C, Hamman RF, Saydah S, Wagenknecht LE (2020) Trends in incidence of type 1 and type 2 diabetes among youths—selected counties and Indian reservations, United States, 2002–2015. MMWR Morb Mortal Wkly Rep 69(6):161–165. https://doi.org/10.15585/mmwr.mm6906a3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Padhi S, Nayak AK, Behera A (2020) Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 131:110708. https://doi.org/10.1016/j.biopha.2020.110708

    Article  CAS  PubMed  Google Scholar 

  8. Cahn Avivit, Cefalu William T (2016) Clinical considerations for use of initial combination therapy in type 2 diabetes. Diabetes Care 39(Supplement_2):S137–S145. https://doi.org/10.2337/dcS15-3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feingold KR (2000) Oral and Injectable (Non-insulin) Pharmacological Agents for Type 2 Diabetes, MD Text. com Inc South Dartmouth (MA)

  10. Sun Z, Jiang Q, Li J, Guo J (2020) The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 5(1):150. https://doi.org/10.1038/s41392-020-00265-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park J, Yoon YS, Han HS, Kim YH, Ogawa Y, Park KG, Lee CH, Kim ST, Koo SH (2014) SIK2 Is critical in the regulation of lipid homeostasis and adipogenesis in Vivo. Diabetes 63:3659–3673. https://doi.org/10.2337/db13-1423

    Article  CAS  PubMed  Google Scholar 

  12. Henriksson E, Sall J, Gormand A, Wasserstrom S, Morrice NA, Fritzen AM, Foretz M, Campbell DG, Sakamoto K, Ekelund M, Degerman E, Stenkula KG, Goransson O (2015) SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. J Cell Sci 128:472–486. https://doi.org/10.1242/jcs.153932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wyss PC, Gerber P, Hartman PG, Hubschwerlen C, Locher H, Marty HP, Stahl M (2003) Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high-throughput synthesis and screening. J Med Chem 46(12):2304–2312. https://doi.org/10.1021/jm020495y

    Article  CAS  PubMed  Google Scholar 

  14. Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75(1):137–163. https://doi.org/10.1146/annurev.biochem.75.103004.142702

    Article  CAS  PubMed  Google Scholar 

  15. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280(32):29060–29066. https://doi.org/10.1074/jbc.M503824200

    Article  CAS  PubMed  Google Scholar 

  16. Sakamoto K, Bultot L, Göransson O (2018) The salt-inducible kinases: emerging metabolic regulators. Trends Endocrinol Metab 29(12):827–840. https://doi.org/10.1016/j.tem.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  17. Säll J, Pettersson AML, Björk C, Henriksson E, Wasserstrom S, Linder W, Zhou Y, Hansson O, Andersson DP, Ekelund M, Degerman E, Stenkula KG, Laurencikiene J, Göransson O (2016) Salt-inducible kinase 2 and -3 are downregulated in adipose tissue from obese or insulin-resistant individuals: implications for insulin signalling and glucose uptake in human adipocytes. Diabetologia 60(2):314–323. https://doi.org/10.1007/s00125-016-4141-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton GD, Montminy M (2007) SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 13(5):597–603. https://doi.org/10.1038/nm1573

    Article  CAS  PubMed  Google Scholar 

  19. Walkinshaw DR, Weist R, Kim GW, You L, Xiao L, Nie J, Li CS, Zhao S, Minghong Xu, Yang XJ (2013) The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J Biol Chem 288(13):9345–9362. https://doi.org/10.1074/jbc.M113.456996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel K, Foretz M, Marion A, Campbell DG, Gourlay R, Boudaba N, Tournier E, Titchenell P, Peggie M, Deak M, Wan M, Kaestner KH, Göransson O, Viollet B, Gray NS, Birnbaum MJ, Sutherland C, Sakamoto K (2014) The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat Commun. https://doi.org/10.1038/ncomms5535

    Article  PubMed  Google Scholar 

  21. Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E (2014) Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci 5:190. https://doi.org/10.3389/fpls.2014.00190

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420. https://doi.org/10.2741/2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sonntag T, Vaughan JM, Montminy M (2018) 14–3–3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 285(3):467–480. https://doi.org/10.1111/febs.14351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet Brian K (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1b. J Med Chem 45(11):2213–2221. https://doi.org/10.1021/jm010548w

    Article  CAS  PubMed  Google Scholar 

  25. Kick EK, Roe DC, Skillman AG, Liu G, Ewing TJ, Sun Y, Kuntz ID, Ellman JA (1997) Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem Biol 4:297–307. https://doi.org/10.1016/s1074-5521(97)90073-9

    Article  CAS  PubMed  Google Scholar 

  26. Oshiro C, Bradley EK, Eksterowicz J, Evensen E, Lamb ML, Lanctot JK, Putta S, Stanton R, Grootenhuis PD (2004) Performance of 3d-database molecular docking studies into homology models. J Med Chem 47(3):764–767. https://doi.org/10.1021/jm0300781

    Article  CAS  PubMed  Google Scholar 

  27. Paiva AM, Vanderwall DE, Blanchard JS, Kozarich JW, Williamson JM, Kelly TM (2001) Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. Biochimica et Biophysica Acta 1545(1–2):67–77. https://doi.org/10.1016/S0167-4838(00)00262-4

    Article  CAS  PubMed  Google Scholar 

  28. Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14:676–683. https://doi.org/10.1016/j.drudis.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  29. UniProt Consortium, Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R et al (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480-89. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  30. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL (2019) Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. https://doi.org/10.1186/s12859-019-2996-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Molecular Biol 310(1):243–257. https://doi.org/10.1006/jmbi.2001.4762

    Article  CAS  Google Scholar 

  32. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  34. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereo chemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  35. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server):W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schrödinger Release 2021–4: (2021) Protein Preparation Wizard; Epik Schrödinger LLC New York NY 2021, Impact Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY.

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetic and properties of organic liquids. J Am Chem 118:11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  38. Hosseini M, Chen W, Xiao D, Wang C (2021) Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis Clin Med 4(1):1–16. https://doi.org/10.1093/pcmedi/pbab001

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided-Drug Design 7(2):146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  Google Scholar 

  40. Sundberg TB, Liang Y, Huixian W, Choi HG, Kim ND, Sim T, Johannessen L, Petrone A, Khor B, Graham DB, Latorre IJ, Phillips AJ, Schreiber SL, Perez J, Shamji AF, Gray NS, Xavier RJ (2016) Development of chemical probes for investigation of salt-inducible kinase function in vivo. ACS Chem Biol 11(8):2105–2111. https://doi.org/10.1021/acschembio.6b00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark K, MacKenzie KF, Petkevicius K, Kristariyanto Y, Zhang J, Choi HG, Peggie M, Plater L, Pedrioli PGA, McIver Ed, Gray NS, Simon J, Arthur C, Cohen P (2012) Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc Natl Acad Sci 109(42):16986–16991. https://doi.org/10.1073/pnas.1215450109

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mingsong S, Lun W, Penghui L, Jiang L, Lijuan C, Dingguo X (2021) Dasatinib-SIK2 binding elucidated by homology modeling molecular docking and dynamics simulations. ACS Omega 6:11025–11038. https://doi.org/10.1021/acsomega.1c00947

    Article  CAS  Google Scholar 

  43. Roberta T, Marcel R, Monika R, Lena MB, Thales K, Andreas CJ, Benedict-Tilman B, Ismahan A, Thomas H, Antti P, Klaus S, Mourad S, Stefan K (2021) Structure-based design of selective salt-inducible kinase inhibitors. J Med Chem 64:8142–8160. https://doi.org/10.1101/2021.04.08.439011

    Article  Google Scholar 

  44. Shi M, Zhao M, Wang L, Liu K, Li P, Liu J, Xu D (2021) Exploring the stability of inhibitor binding to SIK2 using molecular dynamics simulation and binding free energy calculation. Phys Chem Chem Phys 23:13216–13227. https://doi.org/10.1039/D1CP00717C

    Article  CAS  PubMed  Google Scholar 

  45. Mills Nancy (2006) ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; academic price: $710 for download, $800 for CD-ROM. J Am Chem Soc 128(41):13649–13650

    Article  CAS  Google Scholar 

  46. Schrödinger Release 2020 (2020) LigPrep. Schrödinger LLC, New York

    Google Scholar 

  47. Roos K, Chuanjie W, Damm W, Reboul M, Stevenson JM, Chao L, Dahlgren MK, Mondal S, Chen W, Wang L, Abel R, Friesner RA, Harder ED (2019) OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput 15(3):1863–1874. https://doi.org/10.1021/acs.jctc.8b01026

    Article  CAS  PubMed  Google Scholar 

  48. Schrödinger Release 2020 (2020) Sitemap Schrödinger LLC, New York

  49. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389. https://doi.org/10.1021/ci800324m

    Article  CAS  PubMed  Google Scholar 

  50. Schrödinger Release 2020 (2020) Glide Schrödinger LLC, New York

  51. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  52. Jayaprakash P, Biswal J, Kanagarajan S, Prabhu D, Gogoi P, Prasad Kanaujia S, Jeyakanthan J (2019) Design of novel PhMTNA inhibitors, targeting neurological disorder through homology modeling, molecular docking, and dynamics approaches. J Recept Signal Transduct 39(1):28–38. https://doi.org/10.1080/10799893.2019.1567786

    Article  CAS  Google Scholar 

  53. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 9:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  Google Scholar 

  54. Dixon SL, Smondyrev AM, Rao SN (2006) ö PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372. https://doi.org/10.1111/j.1747-0285.200600384.x

    Article  CAS  PubMed  Google Scholar 

  55. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) ö PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D Database screening. 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671. https://doi.org/10.1007/s10822-006-9087-6

    Article  CAS  PubMed  Google Scholar 

  56. Biswal J, Jayaprakash P, Kumar RS, Venkatraman G, Poopandi S, Rangasamy R, Jeyaraman J (2019) Identification of Pak1 inhibitors using water thermodynamic analysis. J Biomol Struc Dyn 38(1):13–31. https://doi.org/10.1080/07391102.2019.1567393

    Article  CAS  Google Scholar 

  57. Lionta E, Spyrou G, Vassilatis D, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938. https://doi.org/10.2174/1568026614666140929124445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moitessier N, Englebienne P, Lee DJ, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153:S7–S26. https://doi.org/10.1038/sj.bjp.0707515

    Article  CAS  PubMed  Google Scholar 

  59. Rajamanikandan S, Jeyaraman J, Srinivasan P (2017) Discovery of potent inhibitors targeting Vibrio harveyi LuxR through shape and e-pharmacophore based virtual screening and its biological evaluation. Microb Pathog 103:40–56. https://doi.org/10.1016/j.micpath.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  60. Choubey SK, Nachiappan M, Richard M, Chitra JP, Jeyaraman J (2020) Structural and functional insights of STAT2-NS5 interaction for the identification of NS5 antagonist-an approach for restoring interferon signaling. Comput Biol Chem 88:107332. https://doi.org/10.1016/j.compbiolchem.2020.107332

    Article  CAS  PubMed  Google Scholar 

  61. Choubey SK, Prabhu D, Nachiappan M, Biswal J, Jeyaraman J (2017) Molecular modeling, dynamics studies and density functional theory approaches to identify potential inhibitors of SIRT4 protein from Homo sapiens: a novel target for the treatment of type 2 diabetes. J Biomol Struct Dyn 35:3316–3329. https://doi.org/10.1080/07391102.2016.1254117

    Article  CAS  PubMed  Google Scholar 

  62. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–57. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Acharya R, Chacko S, Bose P, Lapenna A, Prasad SP (2019) Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci rep 9:15743. https://doi.org/10.1038/s41598-019-52162-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schrödinger Release 2021–2 (2021) QikProp. Schrödinger LLC, New York

    Google Scholar 

  65. Prajisha J, Biswal J, Jeyakanthan J (2022) Discovery of potent Camkk1 kinase inhibitors through e-pharmacophore and molecular screening approaches. J Biomol Struct Dyn 40(6):2740–2756. https://doi.org/10.1080/07391102.2020.1842805

    Article  CAS  PubMed  Google Scholar 

  66. Schrödinger Release 2020 (2020) Watermap. Schrödinger LLC, New York

    Google Scholar 

  67. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  68. Bodnarchuk MS, Packer MJ, Haywood A (2020) Utilizing grand canonical Monte Carlo methods in drug discovery. ACS Med Chem Lett 11(1):77–82. https://doi.org/10.1021/acsmedchemlett.9b00499

    Article  CAS  PubMed  Google Scholar 

  69. Robinson DD, Sherman W, Farid R (2010) Understanding kinase selectivity through energetic analysis of binding site waters. Chem Med Chem 65(4):618–27. https://doi.org/10.1002/cmdc.200900501

    Article  CAS  Google Scholar 

  70. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) The role of the active site solvent in the thermodynamics of factor Xaligand binding. J Am Chem Soc 130:2817–2831. https://doi.org/10.1021/ja0771033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mondal J, Friesner RA, Berne BJ (2014) Role of desolvation in thermodynamics and kinetics of ligand binding to a kinase. J Chem Theory Comput 10:5696–5705. https://doi.org/10.1021/ct500584n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Biswal J, Jayaprakash P, Rayala SK, Venkatraman G, Poopandi S, Rangaswamy R, Jeyaraman J (2021) Water mapping and scoring approaches to predict the role of hydration sites in binding affinity of PAK1 inhibitors. Comb Chem High Throughput Screen 25(4):660–676. https://doi.org/10.2174/1386207324666210308110646

    Article  CAS  Google Scholar 

  73. Schrödinger Release 2021–3 (2021) Jaguar. Schrödinger LLC, New York

    Google Scholar 

  74. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  75. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113(18):2110–2142. https://doi.org/10.1002/qua.24481

    Article  CAS  Google Scholar 

  76. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci 76(12):6062–6065. https://doi.org/10.1073/pnas.76.12.6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choubey SK, Jeyaraman J (2016) A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study. J Mol Graph Model 70:54–69. https://doi.org/10.1016/j.jmgm.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  78. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100(31):12974–12980. https://doi.org/10.1021/jp960669l

    Article  CAS  Google Scholar 

  79. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56. https://doi.org/10.1016/0010-4655(95)00042-e

    Article  CAS  Google Scholar 

  80. Mai W, Li P, Bao H, Li X, Jiang L, Hu J, Werner DH (2019) Prism-based DGTD with a simplified periodic boundary condition to analyze FSS with D2n symmetry in a rectangular array under normal incidence. IEEE Antennas Wirel Propag Lett 18(4):771–75. https://doi.org/10.1109/LAWP.2019.2902340

    Article  Google Scholar 

  81. Vander Sluis A, Van der Vorst HA (1986) The rate of convergence of conjugate gradients. Numer Math 48(5):543–560. https://doi.org/10.1007/BF01389450

    Article  Google Scholar 

  82. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  83. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  84. Turner PJ (2005) XMGRACE, Version 5.1.19. Center for coastal and land-margin research. Oregon Graduate Institute of Science and Technology, Beaverton

    Google Scholar 

  85. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins Struc Funct Genet 17(4):412–425. https://doi.org/10.1002/prot.340170408

    Article  CAS  Google Scholar 

  86. Brown SP, Muchmore SW (2009) Large-scale application of high-throughput molecular mechanics with Poisson−Boltzmann surface area for routine physics-based scoring of protein−ligand complexes. J Med Chem 52(10):3159–3165. https://doi.org/10.1021/jm801444x

    Article  CAS  PubMed  Google Scholar 

  87. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143. https://doi.org/10.1021/acs.jctc.7b01295

    Article  CAS  Google Scholar 

  88. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa: a GROMACS tool for high- throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  89. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex ras-raf. J Comput Chem 25(2):238–250. https://doi.org/10.1002/jcc.10379

    Article  CAS  PubMed  Google Scholar 

  90. Biswal J, Jayaprakash P, Rayala SK, Venkatraman G, Rangaswamy R, Jeyaraman J (2021) WaterMap and Molecular dynamic simulation-guided discovery of potential PAK1 inhibitors using repurposing approaches. ACS Omega 6(41):26829–26845. https://doi.org/10.1021/acsomega.1c02032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Elizabeth Sobhia M, Siva Kumar G, Sivangula S, Ghosh K, Singh H, Haokip T, Gibson J (2021) Rapid structure-based identification of potential SARS-CoV-2 main protease inhibitors. Future Med Chem 13(17):1435–1450. https://doi.org/10.4155/fmc-2020-0264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JJ thanks the TANSCHE [RGP/2019-20/ALU/HECP-0049], Indo-Taiwan [GITA/DST/TWIN/P-86/2019] dated: 04/03/2020, DBT(BIC)-No. BT/PR40154/BTIS/137/34/2021, DST-Fund for Improvement of S&T Infrastructure in Universities & Higher Educational Institutions (FIST) (SR/FST/LSI-667/2016) (C), DST Promotion of University Research and Scientific Excellence (PURSE) (No. SR/PURSE Phase 2/38 (G), 2017 and JP thanks ICMR-SRF (No: ISRM/11 (62)/2019 dated: 10/06/ 2019) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyaraman Jeyakanthan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 682 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaprakash, P., Biswal, J., Rangaswamy, R. et al. Designing of potent anti-diabetic molecules by targeting SIK2 using computational approaches. Mol Divers 27, 1101–1121 (2023). https://doi.org/10.1007/s11030-022-10470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10470-0

Keywords

Navigation