Skip to main content

Advertisement

Log in

ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure–activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model’s interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70

    Article  CAS  PubMed  Google Scholar 

  2. Bettens K, Sleegers K, Van Broeckhoven C (2010) Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 19(R1):R4–R11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pulido MLB, Hernández JBA, Ballester MÁF, González CMT, Mekyska J, Smékal Z (2020) Alzheimer’s disease and automatic speech analysis: a review. Expert Syst Appl 150:113213

    Article  Google Scholar 

  4. Alzheimer’s Association (2020) Alzheimer’s disease facts and figures. Alzheimers Dement 16(3):391–460

    Article  Google Scholar 

  5. Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barril X, Kalko SG, Orozco M, Luque FJ (2002) Rational design of reversible acetylcholinesterase inhibitors. Mini Rev Med Chem 2(1):27–36

    Article  CAS  PubMed  Google Scholar 

  7. Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28(3–4):515–522

    Article  CAS  PubMed  Google Scholar 

  8. Lao K, Ji N, Zhang X, Qiao W, Tang Z, Gou X (2019) Drug development for Alzheimer’s disease: review. J Drug Target 27(2):164–173

    Article  CAS  PubMed  Google Scholar 

  9. Bazelyansky M, Robey E, Kirsch JF (1986) Fractional diffusion-limited component of reactions catalyzed by acetylcholinesterase. Biochemistry 25(1):125–130

    Article  CAS  PubMed  Google Scholar 

  10. Altıntop MD, Gurkan-Alp AS, Özkay Y, Kaplancıklı ZA (2013) Synthesis and biological evaluation of a series of dithiocarbamates as new cholinesterase inhibitors. Arch Pharm 346(8):571–576

    Article  Google Scholar 

  11. Rosenberry TL, Brazzolotto X, Macdonald IR, Wandhammer M, Trovaslet-Leroy M, Darvesh S et al (2017) Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study. Molecules 22(12):2098

    Article  PubMed Central  Google Scholar 

  12. Ariel N, Ordentlich A, Barak D, Bino T, Velan B, Shafferman A (1998) The “aromatic patch” of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem J 335(Pt 1):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C et al (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A 90(19):9031–9035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szegletes T, Mallender WD, Thomas PJ, Rosenberry TL (1999) Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect. Biochemistry 38(1):122–133

    Article  CAS  PubMed  Google Scholar 

  15. Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A (2020) Computer-aided drug design of beta-secretase, gamma-secretase and anti-tau inhibitors for the discovery of novel Alzheimer’s therapeutics. Int J Mol Sci 21(3):703

    Article  CAS  PubMed Central  Google Scholar 

  16. Kwon S, Bae H, Jo J, Yoon S (2019) Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform 20(1):521

    Article  Google Scholar 

  17. González-Díaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics–current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029

    Article  PubMed  Google Scholar 

  18. Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V et al (2020) QSAR without borders. Chem Soc Rev 49(11):3525–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toropov AA, Toropova AP (2020) QSPR/QSAR: state-of-art, weirdness, the future. Molecules 25(6):1292

    Article  CAS  PubMed Central  Google Scholar 

  20. Liu A, Guang H, Zhu L, Du G, Lee SM, Wang Y (2007) 3D-QSAR analysis of a new type of acetylcholinesterase inhibitors. Sci China C Life Sci 50(6):726–730

    Article  CAS  PubMed  Google Scholar 

  21. Recanatini M, Cavalli A, Hansch C (1997) A comparative QSAR analysis of acetylcholinesterase inhibitors currently studied for the treatment of Alzheimer’s disease. Chem Biol Interact 105(3):199–228

    Article  CAS  PubMed  Google Scholar 

  22. Shen L-I, Liu G-X, Tang Y (2007) Molecular docking and 3D-QSAR studies of 2-substituted 1-indanone derivatives as acetylcholinesterase inhibitors. Acta Pharmacol Sin 28(12):2053–2063

    Article  CAS  PubMed  Google Scholar 

  23. Castilho MS, Guido RVC, Andricopulo AD (2007) Classical and hologram QSAR studies on a series of tacrine derivatives as butyrylcholinesterase inhibitors. Lett Drug Des Discov 4(2):106–113

    Article  CAS  Google Scholar 

  24. Nour El Houda H, Yacine B, Widad S (2020) QSAR modeling of thirty active compounds for the inhibition of the acetylcholinesterase enzyme. Curr Res Bioinform 8(1)

  25. Son M, Park C, Rampogu S, Zeb A, Lee KW (2019) Discovery of novel acetylcholinesterase inhibitors as potential candidates for the treatment of Alzheimer’s disease. Int J Mol Sci 20(4):1000

    Article  CAS  PubMed Central  Google Scholar 

  26. Karmakar A, Ambure P, Mallick T, Das S, Roy K, Begum NA (2019) Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: an approach towards finding their quantitative structure–activity relationship. Med Chem Res 28(5):723–741

    Article  CAS  Google Scholar 

  27. Wiemann J, Loesche A, Csuk R (2017) Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg Chem 74:145–157

    Article  CAS  PubMed  Google Scholar 

  28. Simeon S, Anuwongcharoen N, Shoombuatong W, Malik AA, Prachayasittikul V, Wikberg JES et al (2016) Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking. PeerJ 4:e2322

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sahin K, Zengin Kurt B, Sonmez F, Durdagi S (2020) Novel AChE and BChE inhibitors using combined virtual screening, text mining and in vitro binding assays. J Biomol Struct Dyn 38(11):3342–3358

    Article  CAS  PubMed  Google Scholar 

  30. Kumar V, Saha A, Roy K (2020) In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Comput Biol Chem 88:107355

    Article  CAS  PubMed  Google Scholar 

  31. Cavdar H, Senturk M, Guney M, Durdagi S, Kayik G, Supuran CT et al (2019) Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies. J Enzyme Inhib Med Chem 34(1):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng B, Li X, Xia J, Wu S (2017) Discovery of novel isoflavone derivatives as AChE/BuChE dual-targeted inhibitors: synthesis, biological evaluation and molecular modelling. J Enzyme Inhib Med Chem 32(1):968–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y, Lin H, Yang H, Tan R, Bian Y, Fu T et al (2017) Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Adv 7(6):3429–3438

    Article  CAS  Google Scholar 

  34. Kumar S (2015) Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin. Indian J Pharmacol 47(4):444–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta S, Mohan CG (2014) Dual binding site and selective acetylcholinesterase inhibitors derived from integrated pharmacophore models and sequential virtual screening. Biomed Res Int 2014:291214

    Article  PubMed  PubMed Central  Google Scholar 

  36. Camps P, Formosa X, Galdeano C, Gómez T, Muñoz-Torrero D, Scarpellini M et al (2008) Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J Med Chem 51(12):3588–3598

    Article  CAS  PubMed  Google Scholar 

  37. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucl Acids Res 47(D1):D930–D940

    Article  CAS  PubMed  Google Scholar 

  38. Lenselink EB, Ten Dijke N, Bongers B, Papadatos G, van Vlijmen HWT, Kowalczyk W et al (2017) Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminform 9(1):45

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nidhi, Glick M, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 46(3):1124–1133

  40. Bender A, Young DW, Jenkins JL, Serrano M, Mikhailov D, Clemons PA et al (2007) Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Comb Chem High Throughput Screen 10(8):719–731

    Article  CAS  PubMed  Google Scholar 

  41. Malik AA, Phanus-Umporn C, Schaduangrat N, Shoombuatong W, Isarankura-Na-Ayudhya C, Nantasenamat C (2020) HCVpred: a web server for predicting the bioactivity of hepatitis C virus NS5B inhibitors. J Comput Chem 41(20):1820–1834

    Article  CAS  PubMed  Google Scholar 

  42. Suvannang N, Preeyanon L, Malik AA, Schaduangrat N, Shoombuatong W, Worachartcheewan A et al (2018) Probing the origin of estrogen receptor alpha inhibition via large-scale QSAR study. RSC Adv 8(21):11344–11356

    Article  CAS  Google Scholar 

  43. Phanus-umporn C, Shoombuatong W, Prachayasittikul V, Anuwongcharoen N, Nantasenamat C (2018) Privileged substructures for anti-sickling activity via cheminformatic analysis. RSC Adv 8(11):5920–5935

    Article  Google Scholar 

  44. Todeschini R, Consonni V (2010) Molecular descriptors for chemoinformatics, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  45. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

    Article  CAS  PubMed  Google Scholar 

  46. Moriwaki H, Tian YS, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. J Cheminform 10(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148

    Article  Google Scholar 

  48. Wójcikowski M, Siedlecki P, Ballester PJ (2019) Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol Biol 2053:1–12

    Article  PubMed  Google Scholar 

  49. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  50. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  51. Song J, Tang H (2004) Accurate classification of homodimeric vs other homooligomeric proteins using a new measure of information discrepancy. J Chem Inf Comput Sci 44(4):1324–1327

    Article  CAS  PubMed  Google Scholar 

  52. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  PubMed  Google Scholar 

  53. Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17(5):4791–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoo C, Shahlaei M (2018) The applications of PCA in QSAR studies: a case study on CCR5 antagonists. Chem Biol Drug Des 91(1):137–152

    Article  CAS  PubMed  Google Scholar 

  55. Organisation for Economic Co-operation and Development (2007) Guidance document on the validation of (quantitative) structure activity relationship [(Q)SAR] models

  56. Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasenamat C (2020) Towards reproducible computational drug discovery. J Cheminform 12(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Eriksson L, Johansson E (1996) Multivariate design and modeling in QSAR. Chemom Intell Lab Syst 34(1):1–19

    Article  CAS  Google Scholar 

  58. Calle ML, Urrea V (2011) Letter to the editor: stability of random forest importance measures. Brief Bioinform 12(1):86–89

    Article  PubMed  Google Scholar 

  59. Khan I, Bakht SM, Ibrar A, Abbas S, Hameed S, White JM et al (2015) Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Adv 5(27):21249–21267

    Article  CAS  Google Scholar 

  60. Rahman A, Ali MT, Shawan MM, Sarwar MG, Khan MA, Halim MA (2016) Halogen-directed drug design for Alzheimer’s disease: a combined density functional and molecular docking study. SpringerPlus 5(1):1346

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bembenek SD, Keith JM, Letavic MA, Apodaca R, Barbier AJ, Dvorak L et al (2008) Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling. Bioorg Med Chem 16(6):2968–2973

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Fang L, Peng S, Liao H, Lehmann J, Zhang Y (2012) Discovery of a novel acetylcholinesterase inhibitor by structure-based virtual screening techniques. Bioorg Med Chem Lett 22(9):3181–3187

    Article  CAS  PubMed  Google Scholar 

  63. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  64. Acosta-Guzmán P, Mateus-Gómez A, Gamba-Sánchez D (2018) Direct transamidation reactions: mechanism and recent advances. Molecules 23(9):2382

    Article  PubMed Central  Google Scholar 

  65. Bode JW (2006) Emerging methods in amide- and peptide-bond formation. Curr Opin Drug Discov Devel 9(6):765–775

    CAS  PubMed  Google Scholar 

  66. Sadiq A, Mahmood F, Ullah F, Ayaz M, Ahmad S, Haq FU et al (2015) Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem Cent J 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  67. Weinstock M, Razin M, Chorev M, Enz A (1994) Pharmacological evaluation of phenyl-carbamates as CNS-selective acetylcholinesterase inhibitors. J Neural Transm Suppl 43:219–225

    CAS  PubMed  Google Scholar 

  68. Maggi L, Mantegazza R (2011) Treatment of myasthenia gravis: focus on pyridostigmine. Clin Drug Investig 31(10):691–701

    Article  CAS  PubMed  Google Scholar 

  69. Winblad B, Giacobini E, Frolich L, Friedhoff LT, Bruinsma G, Becker RE et al (2010) Phenserine efficacy in Alzheimer’s disease. J Alzheimers Dis 22(4):1201–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kratky M, Stepankova S, Vorcakova K, Svarcova M, Vinsova J (2016) Novel cholinesterase inhibitors based on O-aromatic N, N-disubstituted carbamates and thiocarbamates. Molecules 21(2):191

    Article  PubMed Central  Google Scholar 

  71. Saxena A, Redman AM, Jiang X, Lockridge O, Doctor BP (1999) Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem Biol Interact 119–120:61–69

    Article  PubMed  Google Scholar 

  72. Darvesh S, Darvesh KV, McDonald RS, Mataija D, Walsh R, Mothana S et al (2008) Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem 51(14):4200–4212

    Article  CAS  PubMed  Google Scholar 

  73. Yusufzai SK, Khan MS, Sulaiman O, Osman H, Lamjin DN (2018) Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem Cent J 12(1):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Radic Z, Pickering NA, Vellom DC, Camp S, Taylor P (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32(45):12074–12084

    Article  CAS  PubMed  Google Scholar 

  75. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278(42):41141–41147

    Article  CAS  PubMed  Google Scholar 

  76. Mallender WD, Szegletes T, Rosenberry TL (2000) Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway. Biochemistry 39(26):7753–7763

    Article  CAS  PubMed  Google Scholar 

  77. Wandhammer M, de Koning M, van Grol M, Loiodice M, Saurel L, Noort D et al (2013) A step toward the reactivation of aged cholinesterases–crystal structure of ligands binding to aged human butyrylcholinesterase. Chem Biol Interact 203(1):19–23

    Article  CAS  PubMed  Google Scholar 

  78. Dighe SN, Deora GS, De la Mora E, Nachon F, Chan S, Parat MO et al (2016) Discovery and structure-activity relationships of a highly selective butyrylcholinesterase inhibitor by structure-based virtual screening. J Med Chem 59(16):7683–7689

    Article  CAS  PubMed  Google Scholar 

  79. Roe CM, Anderson MJ, Spivack B (2002) Use of anticholinergic medications by older adults with dementia. J Am Geriatr Soc 50(5):836–842

    Article  PubMed  Google Scholar 

  80. Saglik BN, Ilgin S, Ozkay Y (2016) Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. Eur J Med Chem 124:1026–1040

    Article  CAS  PubMed  Google Scholar 

  81. Özkay ÜD, Can ÖD, Sağlık BN, Turan N (2017) A benzothiazole/piperazine derivative with acetylcholinesterase inhibitory activity: Improvement in streptozotocin-induced cognitive deficits in rats. Pharmacol Rep 69(6):1349–1356

    Article  Google Scholar 

  82. Mishra CB, Kumari S, Manral A, Prakash A, Saini V, Lynn AM et al (2017) Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur J Med Chem 125:736–750

    Article  CAS  PubMed  Google Scholar 

  83. Dolles D, Nimczick M, Scheiner M, Ramler J, Stadtmuller P, Sawatzky E et al (2016) Aminobenzimidazoles and structural isomers as templates for dual-acting butyrylcholinesterase inhibitors and hCB2 R ligands to combat neurodegenerative disorders. ChemMedChem 11(12):1270–1283

    Article  CAS  PubMed  Google Scholar 

  84. Bajda M, Wieckowska A, Hebda M, Guzior N, Sotriffer CA, Malawska B (2013) Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 14(3):5608–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucl Acids Res 35:D198-201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the New Researcher Grant (A32/ 2561) from Mahidol University; the annual budget Grant (B.E. 2557-2559) of Mahidol University and the Research Career Development Grant (No. RSA6280075) from the Thailand Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanin Nantasenamat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A.A., Ojha, S.C., Schaduangrat, N. et al. ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Mol Divers 26, 467–487 (2022). https://doi.org/10.1007/s11030-021-10292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10292-6

Keywords

Navigation