Skip to main content

Advertisement

Log in

New benzamide derivatives and their nicotinamide/cinnamamide analogs as cholinesterase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this study, a total of 18 new benzamide/ nicotinamide/ cinnamamide derivative compounds were designed and synthesized for the first time (except B1 and B5) by conventional and microwave irradiation methods. The chemical structures of the synthesized compounds were characterized by 1H NMR, 13C NMR, and HRMS spectra. In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition effects of the compounds were evaluated to find out new possible drug candidate molecule/s. According to the inhibition results, the IC50 values of the compounds synthesized were in the range of 10.66–83.03 nM towards AChE, while they were in the range of 32.74–66.68 nM towards BuChE. Tacrine was used as the reference drug and its IC50 values were 20.85 nM and 15.66 nM towards AChE and BuChE, respectively. The most active compounds B4 (IC50: 15.42 nM), N4 (IC50: 12.14 nM), and C4 (IC50: 10.67 nM) in each series towards AChE were docked at the binding site of AChE enzyme to explain the inhibitory activities of each series. On the other hand, the compounds B4, N4, and C4 showed satisfactory pharmacokinetic properties via the prediction of ADME profiles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grabher BJ (2018) Effects of alzheimer disease on patients and their family. J Nucl Med Technol 46(4):335–340. https://doi.org/10.2967/jnmt.118.218057

    Article  PubMed  Google Scholar 

  2. Moodie Lindon WK, Sepčić K, Turk T, Frangež R, Svenson J (2019) Natural cholinesterase inhibitors from marine organisms. Nat Prod Rep 36(8):1053–1092. https://doi.org/10.1039/C9NP00010K

    Article  CAS  PubMed  Google Scholar 

  3. Liu P-P, Xie Y, Meng X-Y, Kang J-S (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 4(1):29. https://doi.org/10.1038/s41392-019-0063-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greig NH, Utsuki T, Yu QS, Zhu XX, Holloway HW, Perry T, Lee B, Ingram DK, Lahiri DK (2001) A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17(3):159–165

    Article  CAS  PubMed  Google Scholar 

  5. Moss DE, Perez RG, Kobayashi H (2017) Cholinesterase inhibitor therapy in alzheimer’s disease: the limits and tolerability of irreversible cns-selective acetylcholinesterase inhibition in primates. J Alzheimer’s Dis 55(3):1285–1294. https://doi.org/10.3233/Jad-160733

    Article  CAS  Google Scholar 

  6. Bentley P, Driver J, Dolan RJ (2008) Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain 131:409–424. https://doi.org/10.1093/brain/awm299

    Article  PubMed  Google Scholar 

  7. Giacobini E, Spiegel R, Enz A, Veroff AE, Cutler NR (2002) Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm 109(7–8):1053–1065. https://doi.org/10.1007/s007020200089

    Article  CAS  PubMed  Google Scholar 

  8. Mecocci P, Paolacci L, Boccardi V (2020) Chapter 29 - Cholinesterase inhibitors in dementias: an overview. In: Martin CR, Preedy VR (eds) Diagnosis and Management in Dementia. Academic Press, https://doi.org/10.1016/B978-0-12-815854-8.00029-X

  9. Md. Tanvir K, Md. Sahab U, Mst. Marium B, Shanmugam T, Md. Sohanur R, Lotfi A, Bijo M, Muniruddin A, George EB, Ghulam Md A, (2019) Cholinesterase inhibitors for alzheimer’s disease: multitargeting strategy based on anti-alzheimer’s drugs repositioning. Curr Pharm Des 25(33):3519–3535. https://doi.org/10.2174/1381612825666191008103141

    Article  CAS  Google Scholar 

  10. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren Jan JGM (2019) Myasthenia gravis (Primer). Nat Rev Dis Primers. https://doi.org/10.1038/s41572-019-0079-y

    Article  PubMed  Google Scholar 

  11. Ragab HM, Teleb M, Haidar HR, Gouda N (2019) Chlorinated tacrine analogs: design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease. Bioorg Chem 86:557–568. https://doi.org/10.1016/j.bioorg.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  12. Amine Khodja I, Boulebd H (2021) Synthesis, biological evaluation, theoretical investigations, docking study and ADME parameters of some 1,4-bisphenylhydrazone derivatives as potent antioxidant agents and acetylcholinesterase inhibitors. Mol Diversity 25(1):279–290. https://doi.org/10.1007/s11030-020-10064-8

    Article  CAS  Google Scholar 

  13. Mehrazar M, Hassankalhori M, Toolabi M, Goli F, Moghimi S, Nadri H, Bukhari SNA, Firoozpour L, Foroumadi A (2020) Design and synthesis of benzodiazepine-1,2,3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors. Mol Diversity 24(4):997–1013. https://doi.org/10.1007/s11030-019-10008-x

    Article  CAS  Google Scholar 

  14. Ghobadian R, Esfandyari R, Nadri H, Moradi A, Mahdavi M, Akbarzadeh T, Khaleghzadeh-Ahangar H, Edraki N, Sharifzadeh M, Amini M (2020) Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Mol Diversity 24(1):211–223. https://doi.org/10.1007/s11030-019-09943-6

    Article  CAS  Google Scholar 

  15. Straniero V, Suigo L, Casiraghi A, Sebastián-Pérez V, Hrast M, Zanotto C, Zdovc I, De Giuli Morghen C, Radaelli A, Valoti E (2020) Benzamide Derivatives Targeting the Cell Division Protein FtsZ: Modifications of the Linker and the Benzodioxane Scaffold and Their Effects on Antimicrobial Activity. Antibiotics 9 (4). Doi: https://doi.org/10.3390/antibiotics9040160

  16. Perin N, Roškarić P, Sović I, Boček I, Starčević K, Hranjec M, Vianello R (2018) Amino-substituted benzamide derivatives as promising antioxidant agents: a combined experimental and computational study. Chem Res Toxicol 31(9):974–984. https://doi.org/10.1021/acs.chemrestox.8b00175

    Article  CAS  PubMed  Google Scholar 

  17. Makovec F, Peris W, Revel L, Giovanetti R, Redaelli D, Rovati LC (1992) Antiallergic and cytoprotective activity of new N-phenylbenzamido acid derivatives. J Med Chem 35(20):3633–3640. https://doi.org/10.1021/jm00098a006

    Article  CAS  PubMed  Google Scholar 

  18. Wajid S, Khatoon A, Khan MA, Zafar H, Kanwal S, Atta ur R, Choudhary MI, Basha FZ, (2019) Microwave-Assisted Organic Synthesis, structure–activity relationship, kinetics and molecular docking studies of non-cytotoxic benzamide derivatives as selective butyrylcholinesterase inhibitors. Bioorg Med Chem 27(18):4030–4040. https://doi.org/10.1016/j.bmc.2019.07.015

    Article  CAS  PubMed  Google Scholar 

  19. Gao X-h, Liu L-b, Liu H-r, Tang J-j, Kang L, Wu H, Cui P, Yan J (2018) Structure–activity relationship investigation of benzamide and picolinamide derivatives containing dimethylamine side chain as acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 33(1):110–114. https://doi.org/10.1080/14756366.2017.1399885

    Article  CAS  PubMed  Google Scholar 

  20. Rui M, Rossino G, Coniglio S, Monteleone S, Scuteri A, Malacrida A, Rossi D, Catenacci L, Sorrenti M, Paolillo M, Curti D, Venturini L, Schepmann D, Wünsch B, Liedl KR, Cavaletti G, Pace V, Urban E, Collina S (2018) Identification of dual Sigma1 receptor modulators/acetylcholinesterase inhibitors with antioxidant and neurotrophic properties, as neuroprotective agents. Eur J Med Chem 158:353–370. https://doi.org/10.1016/j.ejmech.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Çatak J (2019) Determination of niacin profiles in some animal and plant based foods by high performance liquid chromatography: association with healthy nutrition. J Anim Sci Technol 61(3):138–146. https://doi.org/10.5187/jast.2019.61.3.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19. https://doi.org/10.1016/j.tibs.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  23. Fricker RA, Green EL, Jenkins SI, Griffin SM (2018) The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 11:117864691877665. https://doi.org/10.1177/1178646918776658

    Article  Google Scholar 

  24. Moraski GC, Oliver AG, Markley LD, Cho S, Franzblau SG, Miller MJ (2014) Scaffold-switching: An exploration of 5,6-fused bicyclic heteroaromatics systems to afford antituberculosis activity akin to the imidazo[1,2-a]pyridine-3-carboxylates. Bioorg Med Chem Lett 24(15):3493–3498. https://doi.org/10.1016/j.bmcl.2014.05.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang A, Lv K, Li L, Liu H, Tao Z, Wang B, Liu M, Ma C, Ma X, Han B, Wang A, Lu Y (2019) Design, synthesis and biological activity of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides as new antitubercular agents. Eur J Med Chem 178:715–725. https://doi.org/10.1016/j.ejmech.2019.06.038

    Article  CAS  PubMed  Google Scholar 

  26. Ni T, Li R, Xie F, Zhao J, Huang X, An M, Zang C, Cai Z, Zhang D, Jiang Y (2017) Synthesis and biological evaluation of novel 2-aminonicotinamide derivatives as antifungal agents. ChemMedChem 12(4):319–326. https://doi.org/10.1002/cmdc.201600545

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Lu X, Zhang L-R, Liu J-J, Yang X-H, Wang X-M, Zhu H-L (2012) Design, synthesis and biological evaluation of N-phenylsulfonylnicotinamide derivatives as novel antitumor inhibitors. Bioorg Med Chem Lett 20(4):1411–1416. https://doi.org/10.1016/j.bmc.2012.01.004

    Article  CAS  Google Scholar 

  28. Majellaro M, Stefanachi A, Tardia P, Vicenti C, Boccarelli A, Pannunzio A, Campanella F, Coluccia M, Denora N, Leonetti F, De Candia M, Altomare CD, Cellamare S (2017) Investigating structural requirements for the antiproliferative activity of biphenyl nicotinamides. ChemMedChem 12(16):1380–1389. https://doi.org/10.1002/cmdc.201700365

    Article  CAS  PubMed  Google Scholar 

  29. Peng M, Shi L, Ke S (2017) Nicotinamide-based diamides derivatives as potential cytotoxic agents: synthesis and biological evaluation. Chem Cent J 11 (1). doi:https://doi.org/10.1186/s13065-017-0338-5

  30. Kishore A, Nampurath GK, Mathew SP, Zachariah RT, Potu BK, Rao MS, Valiathan M, Chamallamudi MR (2009) Antidiabetic effect through islet cell protection in streptozotocin diabetes: A preliminary assessment of two thiazolidin-4-ones in Swiss albino mice. Chem-Biol Interact 177(3):242–246. https://doi.org/10.1016/j.cbi.2008.10.032

    Article  CAS  PubMed  Google Scholar 

  31. Yilmaz Z, Piracha F, Anderson L, Mazzola N (2017) Supplements for Diabetes Mellitus: A Review of the Literature. J Res Pharm Pract 30(6):631–638. https://doi.org/10.1177/0897190016663070

    Article  Google Scholar 

  32. Ruf S, Hallur MS, Anchan NK, Swamy IN, Murugesan KR, Sarkar S, Narasimhulu LK, Putta VPRK, Shaik S, Chandrasekar DV, Mane VS, Kadnur SV, Suresh J, Bhamidipati RK, Singh M, Burri RR, Kristam R, Schreuder H, Czech J, Rudolph C, Marker A, Langer T, Mullangi R, Yura T, Gosu R, Kannt A, Dhakshinamoorthy S, Rajagopal S (2018) Novel nicotinamide analog as inhibitor of nicotinamide N-methyltransferase. Bioorg Med Chem Lett 28(5):922–925. https://doi.org/10.1016/j.bmcl.2018.01.058

    Article  CAS  PubMed  Google Scholar 

  33. Kwak JY, Ham HJ, Kim CM, Hwang ES (2015) Nicotinamide exerts antioxidative effects on senescent cells. Mol Cells 38(3):229–235. https://doi.org/10.14348/molcells.2015.2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams PA, Harder JM, John SWM (2017) Glaucoma as a metabolic optic neuropathy: making the case for nicotinamide treatment in glaucoma. J Glaucoma 26(12):1161–1168. https://doi.org/10.1097/IJG.0000000000000767

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chi Y, Sauve AA (2013) Nicotinamide riboside, a trace nutrient in foods, is a Vitamin B3 with effects on energy metabolism and neuroprotection. Current Opinion in Clinical Nutrition & Metabolic Care 16 (6)

  36. Spector R (1987) Niacinamide transport through the blood-brain-barrier. Neurochem Res 12(1):27–31. https://doi.org/10.1007/Bf00971360

    Article  CAS  PubMed  Google Scholar 

  37. Xie X, Gao Y, Zeng M, Wang Y, Wei T-F, Lu Y-B, Zhang W-P (2019) Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer’s disease model mice. Metab Brain Dis 34(1):353–366. https://doi.org/10.1007/s11011-018-0346-8

    Article  CAS  PubMed  Google Scholar 

  38. Lee HJ, Yang SJ (2019) Supplementation with nicotinamide riboside reduces brain inflammation and improves cognitive function in diabetic mice. Int J Mol Sci 20(17):4196. https://doi.org/10.3390/ijms20174196

    Article  CAS  PubMed Central  Google Scholar 

  39. Yao Z, Yang W, Gao Z, Jia P (2017) Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett 647:133–140. https://doi.org/10.1016/j.neulet.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  40. Rennie G, Chen AC, Dhillon H, Vardy J, Damian DL (2015) Nicotinamide and neurocognitive function. Nutr Neurosci 18(5):193–200. https://doi.org/10.1179/1476830514y.0000000112

    Article  CAS  PubMed  Google Scholar 

  41. Żurek E, Szymański P, Mikiciuk-Olasik E (2013) Synthesis and biological activity of new donepezil-hydrazinonicotinamide hybrids. Drug Research 63(03):137–144. https://doi.org/10.1055/s-0033-1333735

    Article  CAS  PubMed  Google Scholar 

  42. Narasimhan B, Belsare D, Pharande D, Mourya V, Dhake A (2004) Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 39(10):827–834. https://doi.org/10.1016/j.ejmech.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro D, Poença C, Varela C, Janela J, Tavares Da Silva EJ, Fernandes E, Roleira FMF (2019) New phenolic cinnamic acid derivatives as selective COX-2 inhibitors. design, synthesis, biological activity and structure-activity relationships. Bioorg Chem 91:103179–103189. https://doi.org/10.1016/j.bioorg.2019.103179

    Article  CAS  PubMed  Google Scholar 

  44. De P, Koumba Yoya G, Constant P, Bedos-Belval F, Duran H, Saffon N, Daffe M, Baltas M (2011) Design, synthesis, and biological evaluation of new cinnamic derivatives as antituberculosis agents. J Med Chem 54(5):1449–1461. https://doi.org/10.1021/jm101510d

    Article  CAS  PubMed  Google Scholar 

  45. Romagnoli R, Baraldi PG, Salvador MK, Chayah M, Camacho ME, Prencipe F, Hamel E, Consolaro F, Basso G, Viola G (2014) Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents. Eur J Med Chem 81:394–407. https://doi.org/10.1016/j.ejmech.2014.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ullah S, Park Y, Ikram M, Lee S, Park C, Kang D, Yang J, Akter J, Yoon S, Chun P, Moon HR (2018) Design, synthesis and anti-melanogenic effect of cinnamamide derivatives. Bioorg Med Chem 26(21):5672–5681. https://doi.org/10.1016/j.bmc.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  47. Ruwizhi N, Aderibigbe BA (2020) Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci 21(16):5712. https://doi.org/10.3390/ijms21165712

    Article  CAS  PubMed Central  Google Scholar 

  48. Gunia-Krzyżak A, Żesławska E, Słoczyńska K, Żelaszczyk D, Sowa A, Koczurkiewicz-Adamczyk P, Popiół J, Nitek W, Pękala E, Marona H (2020) S(+)-(2E)-N-(2-Hydroxypropyl)-3-Phenylprop-2-Enamide (KM-568): a novel cinnamamide derivative with anticonvulsant activity in animal models of seizures and epilepsy. Int J Mol Sci 21(12):4372. https://doi.org/10.3390/ijms21124372

    Article  CAS  PubMed Central  Google Scholar 

  49. Xiao Y, Yang X, Li B, Yuan H, Wan S, Xu Y, Qin Z (2011) Design, synthesis and antifungal/insecticidal evaluation of novel cinnamide derivatives. Molecules 16(11):8945–8957. https://doi.org/10.3390/molecules16118945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gaikwad N, Nanduri S, Madhavi YV (2019) Cinnamamide: An insight into the pharmacological advances and structure–activity relationships. Eur J Med Chem 181:111561–111558. https://doi.org/10.1016/j.ejmech.2019.07.064

    Article  CAS  PubMed  Google Scholar 

  51. Mishra P, Kumar A, Panda G (2019) Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 27(6):895–930. https://doi.org/10.1016/j.bmc.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  52. Xu W, Wang XB, Wang ZM, Wu JJ, Li F, Wang J, Kong LY (2016) Synthesis and evaluation of donepezil-ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. Medchemcomm 7(5):990–998. https://doi.org/10.1039/c6md00053c

    Article  CAS  Google Scholar 

  53. Koca M, Yerdelen KO, Anil B, Kasap Z (2015) Microwave-assisted synthesis, molecular docking, and cholinesterase inhibitory activities of new ethanediamide and 2-butenediamide analogues. Chem Pharm Bull 63(3):210–217. https://doi.org/10.1248/cpb.c14-00754

    Article  CAS  Google Scholar 

  54. Yerdelen KO, Koca M, Kasap Z, Anil B (2015) Preparation, anticholinesterase activity, and docking study of new 2-butenediamide and oxalamide derivatives. J Enzyme Inhib Med Chem 30(4):671–678. https://doi.org/10.3109/14756366.2014.959947

    Article  CAS  PubMed  Google Scholar 

  55. Yerdelen KO, Tosun E (2015) Synthesis, docking and biological evaluation of oxamide and fumaramide analogs as potential AChE and BuChE inhibitors. Med Chem Res 24(2):588–602. https://doi.org/10.1007/s00044-014-1152-4

    Article  CAS  Google Scholar 

  56. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colourimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  57. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bilginer S, Gul HI, Erdal FS, Sakagami H, Gulcin I (2020) New halogenated chalcones with cytotoxic and carbonic anhydrase inhibitory properties: 6-(3-Halogenated phenyl-2-propen-1-oyl)-2(3H)-benzoxazolones. Arch Pharm (Weinheim) 353(6):e1900384. https://doi.org/10.1002/ardp.201900384

    Article  CAS  Google Scholar 

  60. Bilginer S, Gul HI, Anil B, Demir Y, Gulcin I (2020) Synthesis and in silico studies of triazene-substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors. Archiv der Pharmazie Doi: https://doi.org/10.1002/ardp.202000243

  61. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Dr. Hasan Seçen for supporting this study with laboratory facilities, knowledge, and experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Koca.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koca, M., Bilginer, S. New benzamide derivatives and their nicotinamide/cinnamamide analogs as cholinesterase inhibitors. Mol Divers 26, 1201–1212 (2022). https://doi.org/10.1007/s11030-021-10249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10249-9

Keywords

Navigation