Skip to main content

Advertisement

Log in

QSAR analysis of 3-pyrimidin-4-yl-oxazolidin-2-one derivatives isocitrate dehydrogenase inhibitors using Topomer CoMFA and HQSAR methods

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of mIDH1 inhibitors derived from 3-pyrimidine-4-oxazolidin-2-ketone derivatives were studied by QSAR model to explore the key factors that inhibit mIDH1 activity. The generated model was cross-verified and non-cross-verified by Topomer CoMFA and HQSAR methods; the independent test set was verified by PLS method; the Topomer search technology was used for virtual screening and molecular design; and the Surflex-Dock method and ADMET technology were used for molecular docking, pharmacology and toxicity prediction of the designed drug molecules. The Topomer CoMFA and HQSAR cross-validation coefficients q2 are 0.783 and 0.784, respectively, and the non-cross-validation coefficients r2 are 0.978 and 0.934, respectively. Ten new drug molecules have been designed using Topomer search technology. The results of molecular docking and ADMET show that the newly designed drug molecules are effective. The docking situation, pharmacology and toxicity prediction results are good. The model can be used to predict the bioactivity of the same type of new compounds and their derivatives. The prediction results of molecular design, molecular docking and ADMET can provide some ideas for the design and development of novel mIDH1 inhibitor anticancer drugs, and provide certain theoretical basis of the experimental verification of new compounds in the future.

Graphic abstract

Newly designed molecules after docking with corresponding proteins in the PDB library, it can explore the targets of drug molecules acting with large proteins and the related force, which is very helpful for the design of new drugs and the mechanism of drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article and supplementary materials.

References

  1. Popovici-Muller J, Lemieux RM, Artin E et al (2018) Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med Chem Lett 9(4):300–305. https://doi.org/10.1021/acsmedchemlett.7b00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kessler J, Güttler A, Wichmann H et al (2015) IDH1R132H mutation causes a less aggressive phenotype and radiosensitizes human malignant glioma cells independent of the oxygenation status. Radiotherapy Oncol 116(3):381–387. https://doi.org/10.1016/j.radonc.2015.08.007

    Article  CAS  Google Scholar 

  3. Molenaar RJ, Verbaan D, Lamba S et al (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncology 16(9):1263–1273. https://doi.org/10.1093/neuonc/nou005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J, Huang J, Fang H et al (2016) Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer. Oncotarget 7(45):73638–73650

    Article  Google Scholar 

  5. Xuan C, Li Q, Cong W et al (2016) Prognostic and diagnostic potential of isocitrate dehydrogenase 1 in esophageal squamous cell carcinoma. Oncotarget 7(52):86148–86160

    Article  Google Scholar 

  6. Sun N, Chen Z, Tan F et al (2013) Isocitrate dehydrogenase 1 is a novel plasma biomarker for the diagnosis of non-small cell lung cancer. Clin Cancer Res 19(18):5136–5145. https://doi.org/10.1158/1078-0432.CCR-13-0046

    Article  CAS  PubMed  Google Scholar 

  7. Gross S, Cairns RA, Minden MD et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Experiment Med 207(2):339–344. https://doi.org/10.1084/jem.20092506

    Article  CAS  Google Scholar 

  8. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744. https://doi.org/10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30. https://doi.org/10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levell JR, Caferro T, Chenail G et al (2017) Optimization of 3-Pyrimidin-4-yl-oxazolidin-2-ones as allosteric and mutant specific inhibitors of IDH1. ACS Med Chem Lett 8(2):151–156. https://doi.org/10.1021/acsmedchemlett.6b00334

    Article  CAS  PubMed  Google Scholar 

  12. Cho YS, Levell JR, Liu G et al (2017) Discovery and evaluation of clinical candidate IDH305, a brain penetrant mutant IDH1 inhibitor. ACS Med Chem Lett 8(10):1116–1121. https://doi.org/10.1021/acsmedchemlett.7b00342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tong J-B, Luo D, Feng Y et al (2021) Structural modification of 4, 5-dihydro-[1, 2, 4] triazolo [4, 3-f] pteridine derivatives as BRD4 inhibitors using 2D/3D-QSAR and molecular docking analysis. Molecul Divers. https://doi.org/10.1007/s11030-020-10172-5

    Article  Google Scholar 

  14. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  15. Yao K, Liu P, Liu H et al (2019) 3D-QSAR, molecular docking and molecular dynamics simulations study of 3-pyrimidin-4-yl-oxazolidin-2-one derivatives to explore the structure requirements of mutant IDH1 inhibitors. J Mol Struct 1189(5):187–202. https://doi.org/10.1016/j.molstruc.2019.03.092

    Article  CAS  Google Scholar 

  16. Verma J, Khedkar V et al (2010) 3D-QSAR in drug design - a review. CTMC 10(1):95–115. https://doi.org/10.2174/156802610790232260

    Article  CAS  Google Scholar 

  17. JitenderMarshall RG et al (1988) Three-dimensional structure-activity relationships. Trends Pharmacol Sci 9(8):285–289. https://doi.org/10.1016/0165-6147(88)90012-0

    Article  Google Scholar 

  18. Panwar U, Singh SK (2021) Atom-based 3D-QSAR, molecular docking, DFT, and simulation studies of acylhydrazone, hydrazine, and diazene derivatives as IN-LEDGF/p75 inhibitors. Struct Chem 32(1):337–352. https://doi.org/10.1007/s11224-020-01628-3

    Article  CAS  Google Scholar 

  19. Tenenhaus M, Vinzi VE, Chatelin YM et al (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205. https://doi.org/10.1007/s11224-020-01628-3

    Article  CAS  Google Scholar 

  20. Shirota Y, Luo H, Qin W et al (2002) Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA Polymerase (RdRP) NS5B and modulates RNA-dependent RNA Polymerase Activity*. J Biol Chem 277(13):11149–11155. https://doi.org/10.1074/jbc.M111392200

    Article  CAS  PubMed  Google Scholar 

  21. Cramer RD, Cruz P, Stahl G et al (2009) ChemInform abstract: virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases. Using Topomer CoMFA ChemInform 40(15):2180–2195. https://doi.org/10.1021/ci8001556

    Article  CAS  Google Scholar 

  22. Ferreira MMC (2002) Multivariate QSAR. J Brazilian Chem Soc 13(6):742–753. https://doi.org/10.1590/S0103-50532002000600004

    Article  CAS  Google Scholar 

  23. Cramer RD (2003) Topomer CoMFA: a design methodology for rapid lead optimization. J Med Chem 46(3):374–388. https://doi.org/10.1021/jm020194o

    Article  CAS  PubMed  Google Scholar 

  24. Jiao L, Zhang X, Qin Y et al (2016) Hologram QSAR study on the electrophoretic mobility of aromatic acids. Chemometrics Intell Lab Syst 157(15):202–207. https://doi.org/10.1016/j.chemolab.2016.06.020

    Article  CAS  Google Scholar 

  25. Cheng Y, Mei Z, Tung CH et al (2010) Studies on two types of PTP1B inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg Med Chem Lett 20(11):3329–3337. https://doi.org/10.1016/j.bmcl.2010.04.033

    Article  CAS  PubMed  Google Scholar 

  26. Waller CL (2004) A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. J Chem Inform Comput Sci 44(2):758–765. https://doi.org/10.1021/ci0342526

    Article  CAS  Google Scholar 

  27. Pérez-Areales FJ, Betari N, Viayna A et al (2017) Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein–huprine hybrids. Future Med Chem 9(10):965–981. https://doi.org/10.4155/fmc-2017-0049

    Article  CAS  PubMed  Google Scholar 

  28. Abdizadeh R, Hadizadeh F, Abdizadeh T (2020) QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods. J Mol Struct 1199(5):126961. https://doi.org/10.1016/j.molstruc.2019.126961

    Article  CAS  Google Scholar 

  29. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design–a review. Curr Top Med Chem 10(1):95–115. https://doi.org/10.2174/156802610790232260

    Article  CAS  PubMed  Google Scholar 

  30. Busch KW, Swamidoss IM, Fakayode SO et al (2004) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of cyclodextrin guest–host complexes. Analytica Chimica Acta 525(1):53–62. https://doi.org/10.1016/j.aca.2004.07.066

    Article  CAS  Google Scholar 

  31. Ojha PK, Mitra I, Das RN et al (2011) Further exploring rm2 metrics for validation of QSPR models. Chemometrics Intell Lab Syst 107(1):194–205. https://doi.org/10.1016/j.chemolab.2011.03.011

    Article  CAS  Google Scholar 

  32. Rácz A, Bajusz D, Héberger K (2015) Consistency of QSAR models: correct split of training and test sets, ranking of models and performance parameters. SAR QSAR Environ Res 26(7):1–18. https://doi.org/10.1080/1062936X.2015.1084647

    Article  CAS  Google Scholar 

  33. Golbraikh A, Tropsha A (2002) Beware of q2! J Mole Graphics Model 20(4):269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  Google Scholar 

  34. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discovery Today 3(4):160–178. https://doi.org/10.1016/S1359-6446(97)01163-X

    Article  CAS  Google Scholar 

  35. Doman TN, McGovern SL, Witherbee BJ et al (2002) Molecular docking and high-throughput screening for novel inhibitors of protein Tyrosine Phosphatase-1B. J Med Chem 45(11):2213–2221. https://doi.org/10.1021/jm010548w

    Article  CAS  PubMed  Google Scholar 

  36. Yuhong X, Jia S, Zhuoyong Z (2014) Topomer CoMFA and virtual screening studies of azaindole class renin inhibitors. Combinatorial Chem High Throughput Screen 17(5):458–472. https://doi.org/10.2174/1386207317666140107094708

    Article  CAS  Google Scholar 

  37. Sterling T, Irwin JJ (2015) ZINC 15–Ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tong JB, Bai M, Zhao X (2016) 3D-QSAR and docking studies of HIV-1 protease inhibitors using R-group search and Surflex-dock. Med Chem Res 25(11):2619–2630. https://doi.org/10.1007/s00044-016-1701-0

    Article  CAS  Google Scholar 

  39. Liu J, Yan L, Zhang HX et al (2012) Studies of H4R antagonists using 3D-QSAR, molecular docking and molecular dynamics. J Mol Model 18(3):991–1001. https://doi.org/10.1007/s00894-011-1137-x

    Article  CAS  PubMed  Google Scholar 

  40. Pearlman DA, Case DA, Caldwell JW et al (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1):1–41. https://doi.org/10.1016/0010-4655(95)00041-D

    Article  CAS  Google Scholar 

  41. Cleves AE, Jain AN (2015) Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock. J Comput Aided Mol Des 29(6):485–509. https://doi.org/10.1007/s10822-015-9846-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sussman JL, Lin D, Jiang J et al (1998) Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallographica Sect D 54(61):1078–1084. https://doi.org/10.1107/S0907444998009378

    Article  CAS  Google Scholar 

  43. Jain AN (2007) Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21(5):281–306

    Article  CAS  Google Scholar 

  44. Xu C, Ren Y (2015) Molecular modeling studies of [6,6,5] Tricyclic Fused Oxazolidinones as FXa inhibitors using 3D-QSAR, Topomer CoMFA, molecular docking and molecular dynamics simulations. Bioorg Med Chem Lett 25(20):4522–4528. https://doi.org/10.1016/j.bmcl.2015.08.070

    Article  CAS  PubMed  Google Scholar 

  45. Khanna I (2012) Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discovery Today 17(19–20):1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007

    Article  PubMed  Google Scholar 

  46. Cheng F, Li W, Liu G et al (2013) In silico ADMET prediction: recent advances, current challenges and future trends. Current Topics Med Chem 13(11):1273–1289. https://doi.org/10.2174/15680266113139990033

    Article  CAS  Google Scholar 

  47. Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19(8):722–726. https://doi.org/10.1038/90761

    Article  CAS  PubMed  Google Scholar 

  48. Dong J, Wang N-N, Yao Z-J, et al. (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database 10(1):29. http://europepmc.org/abstract/MED/29943074https://doi.org/https://doi.org/10.1186/s13321-018-0283-xhttps://europepmc.org/articles/PMC6020094https://europepmc.org/articles/PMC6020094?pdf=render.

  49. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175(3):880–885. https://doi.org/10.1016/0006-291X(91)91647-U

    Article  CAS  PubMed  Google Scholar 

  50. Tian S, Li Y, Wang J et al (2011) ADME evaluation in drug discovery prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. J Mol Pharm 8(3):841–851

    Article  CAS  Google Scholar 

  51. Trainor GL (2007) The importance of plasma protein binding in drug discovery. Exp Opinion Drug Discovery 2(1):51–64. https://doi.org/10.1517/17460441.2.1.51

    Article  CAS  Google Scholar 

  52. Clark DE (2003) In silico prediction of blood–brain barrier permeation. Drug Discovery Today 8(20):927–933. https://doi.org/10.1016/S1359-6446(03)02827-7

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Schneebeli ST, Bylund J et al (2011) IDSite: an accurate approach to predict P450-mediated drug metabolism. J Chem Theory Comput 7(11):3829–3845. https://doi.org/10.1021/ct200462q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sheridan R, Korzekwa K, Torres R et al (2007) Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. J Med Chem 50(14):3173–3184. https://doi.org/10.1021/jm0613471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Xing J, Xu Y et al (2015) In silico ADME/T modelling for rational drug design. Quart Rev Biophys 48(4):488–515. https://doi.org/10.1017/S0033583515000190

    Article  Google Scholar 

  56. Aronov AM (2005) Predictive in silico modeling for hERG channel blockers. Drug Discovery Today 10(2):149–155. https://doi.org/10.1016/S1359-6446(04)03278-7

    Article  CAS  PubMed  Google Scholar 

  57. Gerald L, Kennedy et al (1986) Estimation of acute oral toxicity in rates by determination of the approximate lethal dose rather than the LD50. J Appl Toxicol 6(3):145–148. https://doi.org/10.1002/jat.2550060302

    Article  Google Scholar 

  58. Roy PP, Leonard JT, Roy K (2008) Exploring the impact of the size of training sets for the development of predictive QSAR models. Chemom Intell Lab Sys Chemometrics Intell Lab Syst 90(1):31–42

    Article  CAS  Google Scholar 

Download references

Funding

This project was funded by the National Natural Science Foundation of China (21475081), the Natural Science Foundation of Shaanxi Province (2019JM -237), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Jian-Bo Tong, Shuai Bian, Xing Zhang, and Ding Luo. Data analysis was performed by Jian-Bo Tong. The first draft of the manuscript was written by Shuai Bian and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian-Bo Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, JB., Bian, S., Zhang, X. et al. QSAR analysis of 3-pyrimidin-4-yl-oxazolidin-2-one derivatives isocitrate dehydrogenase inhibitors using Topomer CoMFA and HQSAR methods. Mol Divers 26, 1017–1037 (2022). https://doi.org/10.1007/s11030-021-10222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10222-6

Keywords

Navigation