Skip to main content

Advertisement

Log in

Dimroth rearrangement-based synthesis of novel derivatives of [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine as a new class of selenium-containing heterocyclic architecture

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

As a part of our ongoing endeavor towards developing novel heterocyclic architectures, a number of novel Se-containing tricyclic heterocycles of the type [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine have been synthesized through heteroannulation of a newly produced hydrazino derivative of selenazolo[4,5-d]pyrimidine with either orthoesters or carbon disulfide in pyridine followed by S-alkylation. Moreover, the multistep protocol employed in this investigation provides a new insight into the Dimroth rearrangement in both acidic and basic media as a means for the cyclocondensation of triazole on the selenazolopyrimidine framework leading to selenazolotriazolopyrimidines.

Graphic Abstract

The synthesis of new derivatives of novel selenazolotriazolopyrimidines via Dimroth rearrangement in both acidic and basic media is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Code availability

Not applicable

References

  1. Ninomiya M, Garud DR, Koketsu M (2011) Biologically significant selenium-containing heterocycles. Coord Chem Rev 255:2968–2990

    Article  CAS  Google Scholar 

  2. Fairweather-Tait SJ, Bao Y, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  PubMed  Google Scholar 

  3. Shamberger RJ, Willis CE (1971) Selenium distribution and human cancer mortality. CRC Crit Rev Clin Lab Sci 2:211–221

    Article  CAS  PubMed  Google Scholar 

  4. Stapleton SR (2000) Selenium: an insulin mimetic. Cell Mol Life Sci C 57:1874–1879

    Article  CAS  Google Scholar 

  5. Lar UA (2013) Trace elements and health: an environmental risk in Nigeria. Earth Sci 2:66–72

    Google Scholar 

  6. Navarro-Alarcon M, López-Martınez MC (2000) Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ 249:347–371

    Article  CAS  PubMed  Google Scholar 

  7. Combs GF Jr (2000) Food system-based approaches to improving micronutrient nutrition: The case for selenium. BioFactors 12:39–43

    Article  CAS  PubMed  Google Scholar 

  8. Zimmermann MB, Köhrle J (2002) The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid 12:867–878

    Article  CAS  PubMed  Google Scholar 

  9. Mehdi Y, Hornick J-L, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiry C, Ruttens A, De Temmerman L et al (2012) Current knowledge in species-related bioavailability of selenium in food. Food Chem 130:767–784

    Article  CAS  Google Scholar 

  11. Umysová D, Vítová M, Doušková I et al (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann G (1889) Ueber Selencyan-und Selenazolverbindungen. Justus Liebigs Ann Chem 250:294–322

    Article  Google Scholar 

  14. Zhao H-C, Shi Y-P, Liu Y-M et al (2013) Synthesis and antitumor-evaluation of 1, 3-selenazole-containing 1, 3, 4-thiadiazole derivatives. Bioorg Med Chem Lett 23:6577–6579

    Article  CAS  PubMed  Google Scholar 

  15. Madhav B, Narayana Murthy S, Anil Kumar BSP et al (2012) A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett 53:3835–3838. https://doi.org/10.1016/j.tetlet.2012.04.097

    Article  CAS  Google Scholar 

  16. Pizzo C, Mahler SG (2014) Synthesis of selenazoles by in situ cycloisomerization of propargyl selenoamides using oxygen-selenium exchange reaction. J Org Chem 79:1856–1860. https://doi.org/10.1021/jo402661b

    Article  CAS  PubMed  Google Scholar 

  17. Wray SK, Smith RH, Gilbert BE, Knight V (1986) Effects of selenazofurin and ribavirin and their 5’-triphosphates on replicative functions of influenza A and B viruses. Antimicrob Agents Chemother 29:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Traiffort E, Ruat M, Arrang J-M et al (1992) Expression of a cloned rat histamine H2 receptor mediating inhibition of arachidonate release and activation of cAMP accumulation. Proc Natl Acad Sci 89:2649–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Goot H, Eriks JC, Leurs R, Timmerman H (1994) Amselamine, a new selective histamine H2-receptor agonist. Bioorg Med Chem Lett 4:1913–1916

    Article  Google Scholar 

  20. Choi SY, Jo YO, Koketsu M et al (2009) Inhibitory effects of 2-(4-chlorophenyl)-1, 3-selenazol-4-one on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. J Korean Soc Appl Biol Chem 52:371–374

    Article  CAS  Google Scholar 

  21. Sekiguchi A, Nishina A, Kimura H et al (2005) HA 5 Ishihara, M. Koketsu. Chem Pharm Bull 53:1439–1442

    Article  CAS  Google Scholar 

  22. Nam KN, Koketsu M, Lee EH (2008) 5-Chloroacetyl-2-amino-1, 3-selenazoles attenuate microglial inflammatory responses through NF-κB inhibition. Eur J Pharmacol 589:53–57

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein BM, Kennedy SD, Hennen WJ (1990) Selenium-77 NMR and crystallographic studies of selenazofurin and its 5-amino derivative. J Am Chem Soc 112:8265–8268

    Article  CAS  Google Scholar 

  24. Shafiee A, Shafaati A, Habibi-Khameneh B (1989) Selenium heterocycles. XXXIX. Synthesis of thieno [3, 4-d] thiazole, thieno [3, 4-d] selenazole, selenolo [3, 4-d] thiazole and selenolo [3, 4-d] selenazole. J Heterocycl Chem 26:709–711

    Article  CAS  Google Scholar 

  25. Ueda S, Terauchi H, Suzuki K et al (2005) Novel and orally bioavailable inducible nitric oxide synthase inhibitors: synthesis and evaluation of optically active 4, 5-dialkyl-2-iminoselenazolidine derivatives. Bioorg Med Chem Lett 15:1361–1366

    Article  CAS  PubMed  Google Scholar 

  26. Nishina A, Kimura H, Kozawa K et al (2011) A superoxide anion-scavenger, 1, 3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase. Toxicol Appl Pharmacol 257:388–395

    Article  CAS  PubMed  Google Scholar 

  27. Venardos KM, Kaye DM (2007) Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem 14:1539–1549

    Article  CAS  PubMed  Google Scholar 

  28. Sanmartín C, Plano D, Font M, Palop JA (2011) Selenium and clinical trials: new therapeutic evidence for multiple diseases. Curr Med Chem 18:4635–4650

    Article  PubMed  Google Scholar 

  29. Merino-Montiel P, Maza S, Martos S et al (2013) Synthesis and antioxidant activity of O-alkyl selenocarbamates, selenoureas and selenohydantoins. Eur J Pharm Sci 48:582–592

    Article  CAS  PubMed  Google Scholar 

  30. Gerzson MFB, Victoria FN, Radatz CS et al (2012) In vitro antioxidant activity and in vivo antidepressant-like effect of α-(phenylselanyl) acetophenone in mice. Pharmacol Biochem Behav 102:21–29

    Article  CAS  PubMed  Google Scholar 

  31. Elshaflu H, Todorović TR, Nikolić M et al (2018) Selenazolyl-hydrazones as novel selective MAO inhibitors with antiproliferative and antioxidant activities: experimental and in-silico studies. Front Chem 6:247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. LaczkowskiMisiura ZK, Biernasiuk K, Malm A (2015) Discovery and evaluation of efficient selenazoles with high antifungal activity against Candida spp. Med Chem (Los Angeles) 11:118–127

    Google Scholar 

  33. Łączkowski KZ, Motylewska K, Baranowska-ŁĄczkowska A et al (2016) Synthesis, antimicrobial evaluation and theoretical prediction of NMR chemical shifts of thiazole and selenazole derivatives with high antifungal activity against Candida spp. J Mol Struct 1108:427–437. https://doi.org/10.1016/j.molstruc.2015.12.033

    Article  CAS  Google Scholar 

  34. Łączkowski KZ, Biernasiuk A, Baranowska-Łączkowska A et al (2016) Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2 H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem 31:24–39

    Article  PubMed  CAS  Google Scholar 

  35. Al-Rubaie AZ, Al-Jadaan SAS, Muslim SK et al (2014) Synthesis, characterization and antibacterial activity of some new ferrocenyl selenazoles and 3, 5-diferrocenyl-1, 2, 4-selenadiazole. J Organomet Chem 774:43–47

    Article  CAS  Google Scholar 

  36. Mbaveng AT, Ignat AG, Ngameni B et al (2016) In vitro antibacterial activities of p-toluenesulfonyl-hydrazinothiazoles and hydrazinoselenazoles against multi-drug resistant Gram-negative phenotypes. BMC Pharmacol Toxicol 17:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Filipović NR, Elshaflu H, Grubišić S et al (2017) Co (III) complexes of (1, 3-selenazol-2-yl) hydrazones and their sulphur analogues. Dalt Trans 46:2910–2924

    Article  CAS  Google Scholar 

  38. Grozav Ignat A, Gaina L, Kuete V et al (2013) Microwave-assisted synthesis of new selenazole derivatives with antiproliferative activity. Molecules 18:4679–4688

    Article  CAS  Google Scholar 

  39. Nishina A, Sekiguchi A, Fukumoto R et al (2007) Selenazoles (selenium compounds) facilitate survival of cultured rat pheochromocytoma PC12 cells after serum-deprivation and stimulate their neuronal differentiation via activation of Akt and mitogen-activated protein kinase, respectively. Biochem Biophys Res Commun 352:360–365

    Article  CAS  PubMed  Google Scholar 

  40. Šmelcerović A, Tomović K, Šmelcerović Ž et al (2017) Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity. Eur J Med Chem 135:491–516

    Article  PubMed  CAS  Google Scholar 

  41. Angeli A, Trallori E, Ferraroni M et al (2018) Discovery of new 2, 5-disubstituted 1, 3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. Eur J Med Chem 157:1214–1222

    Article  CAS  PubMed  Google Scholar 

  42. Geisler K, Jacobs A, Künzler A et al (2002) Efficient synthesis of primary selenocarboxylic amides by reaction of nitriles with phosphorous (V) selenide. Synlett 2002:1983–1986

    Article  Google Scholar 

  43. Geisler K, Künzler A, Below H et al (2004) Synthesis and Reactivity of 2-Acyl-1,3-selenazoles. Synthesis (Stuttg) 1:97–105. https://doi.org/10.1055/s-2003-44348

    Article  CAS  Google Scholar 

  44. King LC, Hlavacek RJ (1950) The reaction of ketones with iodine and thiourea1. J Am Chem Soc 72:3722–3725

    Article  CAS  Google Scholar 

  45. Tazuke S, Kurihara S, Yamaguchi H, Ikeda T (1987) Photochemically triggered physical amplification of photoresponsiveness. J Phys Chem 91:249–251

    Article  CAS  Google Scholar 

  46. Facchinetti V, Avellar MM, Nery ACS et al (2016) An eco-friendly, Hantzsch-based, solvent-free approach to 2-Aminothiazoles and 2-Aminoselenazoles. Synthesis (Stuttg) 48:437–440

    CAS  Google Scholar 

  47. Narender M, Reddy MS, Kumar VP et al (2007) Aqueous-phase one-pot synthesis of 2-aminothiazole-or 2-aminoselenazole-5-carboxylates from β-keto esters, thiourea or selenourea, and n-bromo-succinimide under supramolecular catalysis. Synthesis (Stuttg) 2007:3469–3472

    Article  CAS  Google Scholar 

  48. Madhav JV, Kuarm BS, Rajitha B (2008) Solid-state synthesis of 1,3-Selenazoles employing CuPy 2 Cl 2 as a Lewis Acid catalyst. Synth Commun 38:3514–3522. https://doi.org/10.1080/00397910802162975

    Article  CAS  Google Scholar 

  49. Banothu J, Vaarla K, Bavantula R, Crooks PA (2014) Sodium fluoride as an efficient catalyst for the synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles at ambient temperature. Chinese Chem Lett 25:172–175. https://doi.org/10.1016/j.cclet.2013.10.001

    Article  CAS  Google Scholar 

  50. Ramesh G, Janardhan B, Rajitha B (2015) Green approach: an efficient synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles in aqueous medium under ultrasonic irradiation. Res Chem Intermed 41:8099–8109. https://doi.org/10.1007/s11164-014-1879-z

    Article  CAS  Google Scholar 

  51. Dyachenko IV, Dyachenko VD, Dorovatovskii PV et al (2019) Multicomponent synthesis of Thiazole, Selenazole, Pyrane, and Pyridine derivatives, initiated by the Knoevenagel Reaction. Russ J Org Chem 55:215–226

    Article  CAS  Google Scholar 

  52. Sheikhi-mohammareh S, Shiri A, Bakavoli M (2015) Synthesis of new derivatives of pyrazolo [4, 3- e ][1, 2, 4 ] triazolo [4, 3- c ] pyrimidine. J Chem Res 39:403–406

    Article  CAS  Google Scholar 

  53. Sheikhi-Mohammareh S, Shiri A, Bakavoli M, Mague J (2016) A straightforward approach for the synthesis of novel derivatives of Benzo[b]pyrazolo[5′,1′:2,3]pyrimido[4,5-e][1,4]thiazine. J Heterocycl Chem 53:1231–1235. https://doi.org/10.1002/jhet.2432

    Article  CAS  Google Scholar 

  54. Sheikhi-Mohammareh S, Shiri A (2018) An alternative regioselective approach for the synthesis of highly functionalized derivatives of Pyrazolo[5,1- b ]purine Scaffold. J Heterocycl Chem 55:2055–2060. https://doi.org/10.1002/jhet.3242

    Article  CAS  Google Scholar 

  55. Sheikhi-Mohammareh S, Mashreghi M, Shiri A (2020) Robust approach leading to novel densely functionalized four-cyclic benzo[e]pyrazolo[5′,1′:2,3]pyrimido[4,5-b][1,4]diazepines with antibacterial activity toward resistant strains. J Iran Chem Soc 17:1555–1566. https://doi.org/10.1007/s13738-020-01875-5

    Article  CAS  Google Scholar 

  56. Sheikhi-Mohammareh S, Shiri A, Beyzaei H, Yarmohammadi E (2020) New efficient design and synthesis of novel antioxidant and antifungal 7-imino[1,3]selenazolo[4,5-d]pyrimidine-5(4H)-thiones utilizing a base-promoted cascade addition/cyclization sequence. Monatshefte für Chemie - Chem Mon 151:963–969. https://doi.org/10.1007/s00706-020-02617-2

    Article  CAS  Google Scholar 

  57. Sheikhi-Mohammareh S, Shiri A, Maleki EH et al (2020) Synthesis of various derivatives of [1,3]Selenazolo[4,5-d]pyrimidine and exploitation of these heterocyclic systems as antibacterial, antifungal, and anticancer agents. ChemistrySelect 5:10060–10066. https://doi.org/10.1002/slct.202002474

    Article  CAS  Google Scholar 

  58. Bakavoli M, Bagherzadeh G, Vaseghifar M et al (2010) Molecular iodine promoted synthesis of new pyrazolo[3,4-d]pyrimidine derivatives as potential antibacterial agents. Eur J Med Chem 45:647–650. https://doi.org/10.1016/j.ejmech.2009.10.051

    Article  CAS  PubMed  Google Scholar 

  59. Bigonah-Rasti S, Sheikhi-Mohammareh S, Saadat K, Shiri A (2020) Novel Tricyclic 2-Alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4 H -[1,2,4]triazolo[5,1- f ]purine Derivatives: Synthesis and Characterization. Polycycl Aromat Compd 41(2):1–11. https://doi.org/10.1080/10406638.2020.1852287

    Article  CAS  Google Scholar 

  60. Thomae D, Perspicace E, Xu Z et al (2009) One-pot synthesis of new 2,4,5-trisubstituted 1,3-thiazoles and 1,3-selenazoles. Tetrahedron 65:2982–2988. https://doi.org/10.1016/j.tet.2009.01.104

    Article  CAS  Google Scholar 

  61. Rashad AE, Heikal OA, El-Nezhawy AOH, Abdel-Megeid FME (2005) Synthesis and isomerization of thienotriazolopyrimidine and thienotetrazolopyrimidine derivatives with potential anti-inflammatory activity. Heteroat Chem An Int J Main Gr Elem 16:226–234

    Article  CAS  Google Scholar 

  62. Son H-Y, Song Y-H (2010) A convenient synthesis of new 2-Phenylthieno [3, 2-e][1, 2, 4] triazolo [1, 5-c] pyrimidine derivatives by dimroth rearrangement. J Korean Chem Soc 54:350–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Council of Ferdowsi University of Mashhad for financial support of this project (3/44510). JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shiri.

Ethics declarations

Conflicts of interest

The authors declares that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3094 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhi-Mohammareh, S., Shiri, A. & Mague, J. Dimroth rearrangement-based synthesis of novel derivatives of [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine as a new class of selenium-containing heterocyclic architecture. Mol Divers 26, 923–937 (2022). https://doi.org/10.1007/s11030-021-10203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10203-9

Keywords

Navigation