Skip to main content

Advertisement

Log in

5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this study, new derivatives of 5,6-diphenyl triazine-thio methyl triazole hybrid were designed, synthesized and evaluated as multifunctional agents for Alzheimer’s disease. Among all synthesized compounds, 4a and 4h showed the best inhibitory activities against BACE1 (40% and 37.5% μM inhibition at 50 µM, respectively). Molecular docking studies showed that compound 4a occupied the entire BACE1 enzyme and the thio triazine fragment deeply penetrates into S2 binding site via two hydrogen bonds with Thr72 and Gln73 amino acids. Different aromatic moieties occupy S′2 pocket via hydrophobic interactions. 6-Phenyl ring also had a potential hydrophobic interaction with S1 pocket. In vitro ChE inhibitory assay demonstrated that most of the derivatives exhibited more selectivity toward BuChE than AChE. 4c as the most potent BuChE inhibitor displayed an IC50 value of 6.4 µM, and 4b exhibited AChE inhibitory activity with 25.1% inhibition at 50 μM. Further, molecular docking studies revealed that the thiazolidinones moiety plays a key role in the inhibition mechanism by well fitting into the enzyme bounding pocket. Moreover, molecular docking study of 4a, 4b and 4c with ChE active site was also performed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bäckman L, Jones S, Berger AK, Laukka EJ, Small B (2004) Multiple cognitive deficits during the transition to Alzheimer’s disease. J Int Med 256(3):195–204

    Article  Google Scholar 

  2. Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158

    Article  Google Scholar 

  3. Alzheimer’s A (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332

    Article  Google Scholar 

  4. Edraki N, Firuzi O, Foroumadi A, Miri R, Madadkar-Sobhani A, Khoshneviszadeh M, Shafiee A (2013) Phenylimino-2H-chromen-3-carboxamide derivatives as novel small molecule inhibitors of β-secretase (BACE1). Bioorg Med Chem 21(8):2396–2412

    Article  CAS  Google Scholar 

  5. Sameem B, Saeedi M, Mahdavi M, Shafiee A (2017) A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem 128:332–345. https://doi.org/10.1016/j.ejmech.2016.10.060

    Article  CAS  PubMed  Google Scholar 

  6. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253(5022):872–879

    Article  CAS  Google Scholar 

  7. Castro A, Martinez A (2001) Peripheral and dual binding site acetylcholinesterase inhibitors: implications in treatment of Alzheimer’s disease. Mini Rev Med Chem 1(3):267–272

    Article  CAS  Google Scholar 

  8. Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164(6):2163–2174

    Article  CAS  Google Scholar 

  9. Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 50(4):433–440

    Article  CAS  Google Scholar 

  10. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4(2):131

    Article  CAS  Google Scholar 

  11. Reis J, Cagide F, Valencia ME, Teixeira J, Bagetta D, Pérez C, Uriarte E, Oliveira PJ, Ortuso F, Alcaro S, Rodríguez-Franco MI, Borges F (2018) Multi-target-directed ligands for Alzheimer’s disease: discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur J Med Chem 158:781–800. https://doi.org/10.1016/j.ejmech.2018.07.056

    Article  CAS  PubMed  Google Scholar 

  12. Kumar J, Meena P, Singh A, Jameel E, Maqbool M, Mobashir M, Shandilya A, Tiwari M, Hoda N, Jayaram B (2016) Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur J Med Chem 119:260–277. https://doi.org/10.1016/j.ejmech.2016.04.053

    Article  CAS  PubMed  Google Scholar 

  13. Kandiah N, Pai M-C, Senanarong V, Looi I, Ampil E, Park KW, Karanam AK, Christopher S (2017) Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging 12:697

    Article  CAS  Google Scholar 

  14. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:369808. https://doi.org/10.1155/2012/369808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meakin PJ, Mezzapesa A, Benabou E, Haas ME, Bonardo B, Grino M, Brunel J-M, Desbois-Mouthon C, Biddinger SB, Govers R, Ashford MLJ, Peiretti F (2018) The beta secretase BACE1 regulates the expression of insulin receptor in the liver. Nat Commun 9(1):1306. https://doi.org/10.1038/s41467-018-03755-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobrowolska Zakaria JA, Vassar RJ (2018) A promising, novel, and unique BACE1 inhibitor emerges in the quest to prevent Alzheimer’s disease. EMBO Mol Med. https://doi.org/10.15252/emmm.201809717

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7(9):812–826

    Article  Google Scholar 

  18. Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC (1997) Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 272(3):348–361. https://doi.org/10.1006/jmbi.1997.1245

    Article  CAS  PubMed  Google Scholar 

  19. Leon R, Garcia AG, Marco-Contelles J (2013) Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33(1):139–189. https://doi.org/10.1002/med.20248

    Article  CAS  PubMed  Google Scholar 

  20. Saeedi M, Safavi M, Karimpour-Razkenari E, Mahdavi M, Edraki N, Moghadam FH, Khanavi M, Akbarzadeh T (2017) Synthesis of novel chromenones linked to 1,2,3-triazole ring system: investigation of biological activities against Alzheimer’s disease. Bioorg Chem 70:86–93. https://doi.org/10.1016/j.bioorg.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  21. Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, Asatouri R, Vafadarnejad F, Moghadam FH, Khanavi M, Sharifzadeh M, Akbarzadeh T (2017) Novel tacrine-1,2,3-triazole hybrids: in vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 125:1200–1212. https://doi.org/10.1016/j.ejmech.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  22. Iraji A, Firuzi O, Khoshneviszadeh M, Tavakkoli M, Mahdavi M, Nadri H, Edraki N, Miri R (2017) Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur J Med Chem 141:690–702. https://doi.org/10.1016/j.ejmech.2017.09.057

    Article  CAS  PubMed  Google Scholar 

  23. Iraji A, Firuzi O, Khoshneviszadeh M, Nadri H, Edraki N, Miri R (2018) Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg Chem 77:223–235. https://doi.org/10.1016/j.bioorg.2018.01.017

    Article  CAS  PubMed  Google Scholar 

  24. Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O (2019) Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: design, synthesis and biological evaluation. Bioorg Chem 84:363–371. https://doi.org/10.1016/j.bioorg.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  25. Khoshneviszadeh M, Ghahremani MH, Foroumadi A, Miri R, Firuzi O, Madadkar-Sobhani A, Edraki N, Parsa M, Shafiee A (2013) Design, synthesis and biological evaluation of novel anti-cytokine 1,2,4-triazine derivatives. Bioorg Med Chem 21(21):6708–6717. https://doi.org/10.1016/j.bmc.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  26. Saeedi M, Mohtadi-Haghighi D, Mirfazli SS, Mahdavi M, Hariri R, Lotfian H, Edraki N, Iraji A, Firuzi O, Akbarzadeh T (2019) Design and synthesis of selective acetylcholinesterase inhibitors: arylisoxazole-phenylpiperazine derivatives. Chem Biodivers 16(2):e1800433. https://doi.org/10.1002/cbdv.201800433

    Article  CAS  PubMed  Google Scholar 

  27. Moradi A, Faraji L, Nadri H, Hasanpour Z, Moghadam FH, Pakseresht B, Golshani M, Moghimi S, Ramazani A, Firoozpour L, Khoobi M, Foroumadi A (2018) Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med Chem Res 27(7):1741–1747. https://doi.org/10.1007/s00044-018-2187-8

    Article  CAS  Google Scholar 

  28. Azimi S, Zonouzi A, Firuzi O, Iraji A, Saeedi M, Mahdavi M, Edraki N (2017) Discovery of imidazopyridines containing isoindoline-1,3-dione framework as a new class of BACE1 inhibitors: design, synthesis and SAR analysis. Eur J Med Chem 138:729–737. https://doi.org/10.1016/j.ejmech.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  29. Edraki N, Firuzi O, Fatahi Y, Mahdavi M, Asadi M, Emami S, Divsalar K, Miri R, Iraji A, Khoshneviszadeh M, Firoozpour L, Shafiee A, Foroumadi A (2015) N-(2-(Piperazin-1-yl)phenyl)arylamide derivatives as β-Secretase (BACE1) inhibitors: simple synthesis by ugi four-component reaction and biological evaluation. Arch Pharm 348(5):330–337. https://doi.org/10.1002/ardp.201400322

    Article  CAS  Google Scholar 

  30. Li Q, He S, Chen Y, Feng F, Qu W, Sun H (2018) Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur J Med Chem 158:463–477. https://doi.org/10.1016/j.ejmech.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  31. Silman I, Sussman JL (2008) Acetylcholinesterase: how is structure related to function? Chem Biol Interact 175(1–3):3–10

    Article  CAS  Google Scholar 

  32. Brus B, Kosak U, Turk S, Pislar A, Coquelle N, Kos J, Stojan J, Colletier J-P, Gobec S (2014) Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J Med Chem 57(19):8167–8179

    Article  CAS  Google Scholar 

  33. Edraki N, Iraji A, Firuzi O, Fattahi Y, Mahdavi M, Foroumadi A, Khoshneviszadeh M, Shafiee A, Miri R (2016) 2-Imino 2H-chromene and 2-(phenylimino) 2H-chromene 3-aryl carboxamide derivatives as novel cytotoxic agents: synthesis, biological assay, and molecular docking study. J Iran Chem Soc 13(12):2163–2171. https://doi.org/10.1007/s13738-016-0934-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial support of the Ahvaz branch, Islamic Azad University Ahvaz and the Vice-Chancellor for Research of Shiraz University of Medical Sciences (Grant No: 15280). We also thank National Institute for Medical Research Development, NIMAD (Grant No. 957334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmeh Edraki.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, M., Edraki, N., Badri, R. et al. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents. Mol Divers 24, 641–654 (2020). https://doi.org/10.1007/s11030-019-09970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09970-3

Keywords

Navigation