Skip to main content

Advertisement

Log in

Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

3,5-Diamino-4-(3-trifluoromethylphenyldiazenyl)-1H-pyrazole was used as a starting scaffold for the synthesis of new pyrazole-based heterocycles to study their effects on the proliferation of three human cancer cell lines; human liver carcinoma cell line (HepG-2), colon cancer cell line (HCT-116) and human breast cancer cell line (MCF-7) using MTT assay. The synthesized compounds were characterized on the basis of IR, 1H NMR, 13C NMR, mass spectral data and elemental analysis results. Cytotoxicity assay results revealed that some of the compounds showed potent growth inhibition against all the cell lines tested, with IC50 values in the range of 0.64–7.73 μg/mL. Breast cancer cells were used for further detailed studies to understand the mechanism of cell growth inhibition and apoptosis-inducing effect of the most active compounds. The results indicated that compounds 3a, 10b and 11a arrested MCF-7 cells at G2/M phase of the cell cycle and might induce apoptosis via caspase-3-dependent pathway. Molecular modeling and binding mode analysis of the most active compounds to caspase 3 active site further provide a synergistic mechanism for their pro-apoptotic effects. In order to explore the structural requirements controlling the observed cytotoxic properties, 3D pharmacophore model was generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nepali K, Sharma S, Sharm M, Bedi PMS, Dhar KL (2014) Eur J Med Chem 77:422–487. https://doi.org/10.1016/j.ejmech.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  2. Caleta I, Kralj M, Marjanovic M, Bertosa B, Tomic S (2009) J Med Chem 52:1744–1756. https://doi.org/10.1021/jm801566q

    Article  CAS  PubMed  Google Scholar 

  3. Cotter TG (2009) Nat Rev Can 9(7):501–507. https://doi.org/10.1038/nrc2663

    Article  CAS  Google Scholar 

  4. Watson AJM (2004) Gut 53(11):1701–1709. https://doi.org/10.1136/gut.2004.052704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) BioMed Res Int 1:1–23. https://doi.org/10.1155/2014/150845

    Article  CAS  Google Scholar 

  6. Vera-DiVaio MAF, Freitas ACC, Castro HCA, Albuquerque S, Cabral LM, Rodrigues CR, Albuquerque MG, Martins RCA, Henriques MG, DiasL RS (2009) Bioorg Med Chem 17:295. https://doi.org/10.1016/j.bmc.2008.10.085

    Article  CAS  PubMed  Google Scholar 

  7. Karabacak M, Altıntop MD, Çiftçi HI, Koga I, Otsuka M, Fujita M, Özdemir A (2015) Molecules 20:19066–19084. https://doi.org/10.3390/molecules201019066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prakash O, Kumar R, Parkash V (2008) Eur J Med Chem 43:435–440. https://doi.org/10.1016/j.ejmech.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Pérez-Fernández R, Goya P, Elguero J (2014) ARKIVOC 2:233–293

    Google Scholar 

  10. Mohamed FM, Mohamed MS, Fathi MM, Shouman SA, Abdelhamid IA (2014) Anti-Can Agents Med Chem 14:1282–1292. https://doi.org/10.1039/C6RA04974E

    Article  CAS  Google Scholar 

  11. Toton E, Ignatowicz MK, Bernard J, Kujawski M, Rybczynska J (2013) Physiol Pharmacol 64:115–123 PMID:23568979

    CAS  Google Scholar 

  12. Zheng LW, Li Y, Ge D, Zhao BX, Liu YR, Lv HS, Ding J, Miao JY (2010) Bioorg Med Chem Lett 20:4766–4770. https://doi.org/10.1016/j.bmcl.2010.06.121

    Article  CAS  PubMed  Google Scholar 

  13. Farag AM, Ali KAK, El-Debss TMA, Mayhoub AS, Amr AE, Abdel- Hafez NA, Abdulla MM (2010) Eur J Med Chem 45:5887–5898. https://doi.org/10.1016/j.ejmech.2010.09.054

    Article  CAS  PubMed  Google Scholar 

  14. Kumar H, Saini D, Jain SN (2013) Eur J Med Chem 70:248–258. https://doi.org/10.1016/j.ejmech.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  15. Nevagi Reshma J (2014) Der Pharmacia Lett 6(5):285–295

    CAS  Google Scholar 

  16. Al-Adiwish WM, Tahir MIM, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob WA (2013) Eur J Med Chem 64:464–476. https://doi.org/10.1016/j.ejmech.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  17. Hwang JY, Windisch MP, Jo S, Kim K, Kong S, Kim HC, Kim S, Kim H, Lee ME, Kim Y (2012) Bioorg MedChem Lett 22:7297–7301. https://doi.org/10.1016/j.bmcl.2012.10.123

    Article  CAS  Google Scholar 

  18. Ahmed OM, Mohamed MA, Ahmed RR, Ahmed SA (2009) Eur J Med Chem 44:3519–3523. https://doi.org/10.1016/j.ejmech.2009.03.042

    Article  CAS  PubMed  Google Scholar 

  19. Hafez TS, Osman SA, Yosef HAA, Abd El-All AS, Hassan AS, El-Sawy AA, Abdallah MM, Youns M (2013) Sci Pharm 81:339–357. https://doi.org/10.3797/scipharm.1211-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hassan AS, Hafez TS, Osman SA (2015) Sci Pharm 83:27–39. https://doi.org/10.3797/scipharm.1409-14

    Article  CAS  PubMed  Google Scholar 

  21. Hassan AS, Hafez TS, Osman SAM, Ali MM (2015) Turk J Chem 39:1102–1113. https://doi.org/10.3906/kim-1504-12

    Article  CAS  Google Scholar 

  22. Fadeyi OO, Okoro CO (2008) Tetrahedron Lett 49:4725–4727. https://doi.org/10.1016/j.tetlet.2008.05.120

    Article  CAS  Google Scholar 

  23. Aggarwal R, Kumar R, Kumar S, Garg G, Mahajan R, Sharma J (2011) J Fluorine Chem 132:965–972. https://doi.org/10.1016/j.jfluchem.2011.07.029

    Article  CAS  Google Scholar 

  24. Singh RP, Shreeve JM (2000) Tetrahedron 56:7613–7632

    Article  CAS  Google Scholar 

  25. Hu H, Ge C, Ding L, Zhang A (2010) Molecules 15:7472–7481. https://doi.org/10.3390/molecules15107472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ranatunge RR, Earl RA, Garvey DS, Janero DR, Gordon Letts L, Martino AM, Murty MG, Richardson SK, Schwalb DJ, Young DV, Zemtseva IS (2004) Bioorg Med Chem Lett 14:6049–6052. https://doi.org/10.1016/j.bmcl.2004.09.073

    Article  CAS  PubMed  Google Scholar 

  27. Sridhar R, Perumal PT, Etti S, Shanmugam G, Ponnuswamy MN, Prabavathyc VR, Mathivanan N (2004) Bioorg Med Chem Lett 14:6035–6040. https://doi.org/10.1016/j.bmcl.2004.09.066

    Article  CAS  PubMed  Google Scholar 

  28. Usachev BI, Obydennov DL, Schenthaler GV, Sosnovskikh VY (2012) Fluorine Chem 137:22–26. https://doi.org/10.1016/j.jfluchem.2012.01.006

    Article  CAS  Google Scholar 

  29. Aggarwal R, Bansal A, Mittal A (2013) J Fluorine Chem 145:95–101. https://doi.org/10.1016/j.jfluchem.2012.10.005

    Article  CAS  Google Scholar 

  30. Nagahara K, Kawano H, Sasaoka S, Ukawa C, Hirama T, Takada A, Cottam HB, Robins RK (1994) J Het Chem 31:239–243. https://doi.org/10.1002/jhet.5570310140

    Article  CAS  Google Scholar 

  31. Elkholy A, Al-Qalaf F, Elnagdi MH (2008) ARKIVOC 14:124–131. https://doi.org/10.3998/ark.5550190.0009.e14

    Article  Google Scholar 

  32. Liu Y, Peterson DA, Kimura H, Schubert D (1997) J Neurochem 69:581–593 PMID:9231715

    Article  CAS  PubMed  Google Scholar 

  33. Huang KB, Chen ZF, Liu YC, Li ZQ, Wei JH, Wang M, Zhang GH, Liang H (2013) Eur J Med Chem 63:76–84. https://doi.org/10.1016/j.ejmech.2013.01.055

    Article  CAS  PubMed  Google Scholar 

  34. Sheen JH, Woo JK, Dickson RB (2003) Br J Can 89:1479–1485. https://doi.org/10.1038/sj.bjc.6601307

    Article  CAS  Google Scholar 

  35. Alnemri ES, Livingston DJ, Nichoson DW, Salvesen G, Thornberry NAW, Wong W, Yuan T (1996) Cell 87:171 PMID:8861900

    Article  CAS  PubMed  Google Scholar 

  36. Kim WH, Yeo M, Kim MS, Chun SB, Shin EC, Park JH (2000) Int J Colorectal Dis 15:105–111. https://doi.org/10.1007/s003840050242

    Article  CAS  PubMed  Google Scholar 

  37. Creagh EM, Martin SJ (2001) Biochem Soc Trans 29:696–702. https://doi.org/10.1042/bst0290696

    Article  CAS  PubMed  Google Scholar 

  38. ‘Amelio MD (2010) Cell Death Differ 17:1104–1114. https://doi.org/10.1038/cdd.2009.180

    Article  CAS  Google Scholar 

  39. Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) J Biol Chem 273:9357–9360. https://doi.org/10.1074/jbc.273.16.9357

    Article  PubMed  Google Scholar 

  40. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kägi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Mak TW (1998) Genes Dev 12:806–819 PMID: 9512515. PMCID:PMC316633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally I. Eissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayed, E.A., Eissa, S.I., Bayoumi, A.H. et al. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol Divers 23, 165–181 (2019). https://doi.org/10.1007/s11030-018-9865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9865-9

Keywords

Navigation