Skip to main content
Log in

Microwave-assisted facile construction of quinoxalinone and benzimidazopyrazinone derivatives via two paths of post-Ugi cascade reaction

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A facile and efficient route to synthesize quinoxalinone and benzimidazopyrazinone was developed via two paths of a post-Ugi cascade reaction. By simply alternating the order of nucleophilic substitution reactions, both heterocycles could be accessed selectively from the same Ugi adduct. Microwave-assisted synthesis protocol provided these compounds with one purification procedure for three steps. These two scaffolds with more possible spaces for further modifications provide great benefit toward combinatorial and medicinal chemistry campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  2. Wang J-L, Chen X-Y, Wu Q, Lin X-F (2014) One-pot synthesis of spirooxazino derivatives via enzyme-initiated multicomponent reactions. Adv Synth Catal 356:999–1005. https://doi.org/10.1002/adsc.201300965

    Article  CAS  Google Scholar 

  3. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112:3083–3135. https://doi.org/10.1021/cr100233r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tempest P, Pettus L, Gore V, Hulme C (2003) MCC/SNAr methodology. Part 2: novel three-step solution phase access to libraries of benzodiazepines. Tetrahedron Lett 44:1947–1950. https://doi.org/10.1016/S0040-4039(03)00084-4

    Article  CAS  Google Scholar 

  5. Yerande SG, Newase KM, Singh B, Boltjes A, Dömling A (2014) Application of cyclic ketones in MCR: Ugi/amide coupling based synthesis of fused tetrazolo[1,5-a][1, 4]benzodiazepines. Tetrahedron Lett 55:3263–3266. https://doi.org/10.1016/j.tetlet.2014.04.040

    Article  CAS  Google Scholar 

  6. Song G-T, Li S-Q, Yang Z-W, Yuan J-H, Wang M-S, Zhu J, Chen Z-Z, Xu Z-G (2015) Microwave-assisted synthesis of fused piperazine-benzimidazoles via a facile, one-pot procedure. Tetrahedron Lett 56:4616–4618. https://doi.org/10.1016/j.tetlet.2015.06.035

    Article  CAS  Google Scholar 

  7. Song G-T, Xu Z-G, Tang D-Y, Li S-Q, Xie Z-G, Zhong H-L, Yang Z-W, Zhu J, Zhang J, Chen Z-Z (2016) Facile microwave-assisted synthesis of benzimidazole scaffolds via Ugi-type three-component condensation (3CC) reactions. Mol Divers 20:575–580. https://doi.org/10.1007/s11030-015-9646-7

    Article  CAS  PubMed  Google Scholar 

  8. Xu Z, Shaw AY, Dietrich J, Cappelli AP, Nichol G, Hulme C (2012) Facile, novel two-step syntheses of benzimidazoles, bis-benzimidazoles, and bis-benzimidazole-dihydroquinoxalines. Mol Divers 16:73–79. https://doi.org/10.1007/s11030-011-9354-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayaz M, Xu Z, Hulme C (2014) Novel succinct routes to quinoxalines and 2-benzimidazolylquinoxalines via the Ugi reaction. Tetrahedron Lett 55:3406–3409. https://doi.org/10.1016/j.tetlet.2014.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azuaje J, El Maatougui A, García-Mera X, Sotelo E (2014) Ugi-based approaches to quinoxaline libraries. ACS Comb Sci 16:403–411. https://doi.org/10.1021/co500036n

    Article  CAS  PubMed  Google Scholar 

  11. Xu Z, Shaw AY, Nichol G, Cappelli AP, Hulme C (2012) Applications of ortho-phenylisonitrile and ortho-N-Boc aniline for the two-step preparation of novel bis-heterocyclic chemotypes. Mol Divers 16:607–612. https://doi.org/10.1007/s11030-012-9374-1

    Article  CAS  PubMed  Google Scholar 

  12. Banfi L, Riva R, Basso A (2010) Coupling isocyanide-based multicomponent reactions with aliphatic or acyl nucleophilic substitution processes. Synlett 1:23–41. https://doi.org/10.1055/s-0029-1218527

    Article  CAS  Google Scholar 

  13. El Kaïm L, Grimaud L, Purumandla SR (2011) Multicomponent synthesis of fused benzimidazolopiperazines. J Org Chem 76:4728–4733. https://doi.org/10.1021/jo200397m

    Article  CAS  PubMed  Google Scholar 

  14. Xu Z, Moliner F, Cappelli PA, Hulme C (2012) Ugi/Aldol sequence: expeditious entry to several families of densely substituted nitrogen heterocycles. Angew Chem Int Ed 51:8037–8040. https://doi.org/10.1002/anie.201202575

    Article  CAS  Google Scholar 

  15. Xu Z, Moliner F, Cappelli PA, Hulme C (2013) Aldol reactions in multicomponent reaction based domino pathways: a multipurpose enabling tool in heterocyclic chemistry. Org Lett 15:2738–2741. https://doi.org/10.1021/ol401068u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basso A, Banfi L, Riva R (2010) A marriage of convenience: combining the power of isocyanide-based multicomponent reactions with the versatility of (hetero)norbornene chemistry. Eur J Org Chem 10:1831–1841. https://doi.org/10.1002/ejoc.200901438

    Article  CAS  Google Scholar 

  17. Ilyin A, Kysil A, Krasavin M, Kurashvili I, Ivachtchenko A (2006) Complexity-enhancing acid-promoted rearrangement of tricyclic products of tandem Ugi 4CC/intramolecular Diels–Alder reaction. J Org Chem 71:9544–9547. https://doi.org/10.1021/jo061825f

    Article  CAS  PubMed  Google Scholar 

  18. Ghandi M, Zarezadeh N, Taheri A (2010) Unique substituted 3-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole-1-carboxamides generated by Ugi 3CC using bifunctional starting material. Tetrahedron 66:8231–8237. https://doi.org/10.1016/j.tet.2010.08.057

    Article  CAS  Google Scholar 

  19. Fan L, Adams AM, Polisar JG, Ganem B (2008) Studies on the chemistry and reactivity of α-substituted ketones in isonitrile-based multicomponent reactions. J Org Chem 73:9720–9726. https://doi.org/10.1021/jo8019708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Brahimi F, Saragovi HU, Burgess K (2010) Bivalent diketopiperazine-based tropomysin receptor kinase C (TrkC) antagonists. J Med Chem 53:5044–5048. https://doi.org/10.1021/jm100148d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feroci M, Chiarotto I, Orsini M, Sotgiu G, Inesi A (2008) Reactivity of electrogenerated N-heterocyclic carbenes in room-temperature ionic liquids. Cyclization to 2-azetidinone ring via C–3/C–4 bond formation. Adv Synth Catal 350:1355–1359. https://doi.org/10.1002/adsc.200800049

    Article  CAS  Google Scholar 

  22. Gois PMP, Afonso CAM (2003) Regio- and stereoselective dirhodium(II)-catalysed intramolecular C–H insertion reactions of α-diazo-α-(dialkoxyphosphoryl)acetamides and -acetates. Eur J Org Chem 19:3798–3810. https://doi.org/10.1002/ejoc.200300330

    Article  CAS  Google Scholar 

  23. Ruijter E, Scheffelaar R, Orru RVA (2011) Multicomponent reaction design in the quest for molecular complexity and diversity. Angew Chem Int Ed 50:6234–6246. https://doi.org/10.1002/anie.201006515

    Article  CAS  Google Scholar 

  24. Pelipko VV, Makarenko SV, Berestovitskaya VM, Baichurin RI (2016) 3-(Nitromethyl)-3,4-dihydroquinoxalin-2(1H)-ones: synthesis and structure. Chem Heterocycl Compd 52:574–577. https://doi.org/10.1007/s10593-016-1934-3

    Article  CAS  Google Scholar 

  25. Conda-Sheridan M, Marler L, Park E-J, Kondratyuk TP, Jermihov K, Mesicar AD, Pezzuto JM, Asolkar RN, Fenical W, Cushman M (2010) Potential chemopreventive agents based on the structure of the lead compound 2-bromo-1-hydroxyphenazine, isolated from Streptomyces Species, Strain CNS284. J Med Chem 53:8688–8699. https://doi.org/10.1021/jm1011066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El-Sabbagh OI, El-Sadek ME, Lashine SM, Yassin SH, El-Nabtity SM (2009) Synthesis of new 2(1H)-quinoxalinone derivatives for antimicrobial and antiinflammatory evaluation. Med Chem Res 18:782–797. https://doi.org/10.1007/s00044-009-9203-y

    Article  CAS  Google Scholar 

  27. Chandra Shekhar A, Shanthan Rao P, Narsaiah B, Allanki AD, Sijwali PS (2014) Emergence of pyrido quinoxalines as new family of antimalarial agents. Eur J Med Chem 77:280–287. https://doi.org/10.1016/j.ejmech.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  28. Gupta D, Ghosh NN, Chandra R (2005) Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg Med Chem Lett 15:1019–1022. https://doi.org/10.1016/j.bmcl.2004.12.041

    Article  CAS  PubMed  Google Scholar 

  29. Alagarsamy V, Solomon VR, Murugan M (2007) Synthesis and pharmacological investigation of novel 4-benzyl-1-substituted-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-ones as new class of H1-antihistaminic agents. Bioorg Med Chem 15:4009–4015. https://doi.org/10.1016/j.bmc.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  30. Kabri Y, Azas N, Dumètre A, Hutters S, Laget M, Verhaeghe P, Gellis A, Vanelle P (2010) Original quinazoline derivatives displaying antiplasmodial properties. Eur J Med Chem 45:616–622. https://doi.org/10.1016/j.ejmech.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  31. Urquiola C, Vieites M, Aguirre G, Marín A, Solano B, Arrambide G, Noblía P, Lavaggi ML, Torre MH, González M, Monge A, Gambino D, Cerecetto H (2006) Improving anti-trypanosomal activity of 3-aminoquinoxaline-2-carbonitrile N1, N4-dioxide derivatives by complexation with vanadium. Bioorg Med Chem 14:5503–5509. https://doi.org/10.1016/j.bmc.2006.04.041

    Article  CAS  PubMed  Google Scholar 

  32. Takano Y, Shiga F, Asano J, Hori W, Fukuchi K, Anraku T, Uno T (2006) Design and synthesis of novel 7-heterocycle-6-trifluoromethyl-3-oxoquinoxaline-2-carboxylic acids bearing a substituted phenyl group as superior AMPA receptor antagonists with good physicochemical properties. Bioorg Med Chem 14:776–792. https://doi.org/10.1016/j.bmc.2005.08.060

    Article  CAS  PubMed  Google Scholar 

  33. Ginzinger W, Mühlgassner G, Arion VB, Jakupec MA, Roller A, Galanski M, Reithofer M, Berger W, Keppler BK (2012) A SAR study of novel antiproliferative ruthenium and osmium complexes with quinoxalinone ligands in human cancer cell lines. J Med Chem 55:3398–3413. https://doi.org/10.1021/jm3000906

    Article  CAS  PubMed  Google Scholar 

  34. Rosse G (2013) Imidazopyrazine derivatives as inhibitors of mTOR. ACS Med Chem Lett 4:498–499. https://doi.org/10.1021/ml400139e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjA1328 and cstc2015zdcy-ztzx0191) and the Scientific Research Foundation of the Chongqing University of Arts and Sciences (Grant Nos. R2013XY01, R2013XY02 and M2016ME11). We would also like to thank Ms H.Z. Liu for obtaining the LC/MS and NMR data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhu or Zhong-Zhu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, GT., Li, Y., Xu, J. et al. Microwave-assisted facile construction of quinoxalinone and benzimidazopyrazinone derivatives via two paths of post-Ugi cascade reaction. Mol Divers 23, 137–145 (2019). https://doi.org/10.1007/s11030-018-9855-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9855-y

Keywords

Navigation