Skip to main content
Log in

Theoretical analysis of somatostatin receptor 5 with antagonists and agonists for the treatment of neuroendocrine tumors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

We report on SSTR5 receptor modeling and its interaction with reported antagonist and agonist molecules. Modeling of the SSTR5 receptor was carried out using multiple templates with the aim of improving the precision of the generated models. The selective SSTR5 antagonists, agonists and native somatostatin SRIF-14 were employed to propose the binding site of SSTR5 and to identify the critical residues involved in the interaction of the receptor with other molecules. Residues Q2.63, D3.32, Q3.36, C186, Y7.34 and Y7.42 were found to be highly significant for their strong interaction with the receptor. SSTR5 antagonists were utilized to perform a 3D quantitative structure–activity relationship study. A comparative molecular field analysis (CoMFA) was conducted using two different alignment schemes, namely the ligand-based and receptor-based alignment methods. The best statistical results were obtained for ligand-based (\({q}^{2} = 0.454\), \({r}^{2}\) = 0.988, noc = 4) and receptor-guided methods (docked mode 1:\({q}^{2} = 0.530\), \({r}^{2} = 0.916\), noc = 5), (docked mode 2:\({q}^{2}\) = 0.555, \({r}^{2 }= 0.957\), noc = 5). Based on CoMFA contour maps, an electropositive substitution at \(\hbox {R}^{1}\), \(\hbox {R}^{2}\) and \(\hbox {R}^{4}\) position and bulky group at \(\hbox {R}^{4}\) position are important in enhancing molecular activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burgus R, Ling N, Butcher M, Guillemin R (1973) Primary structure of somatostatin, a hypothalamic peptide that inhibits the secretion of pituitary growth hormone. Proc Natl Acad Sci USA 70:684–688. doi:10.1073/pnas.70.3.684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey P, O’CarrollAM Patel YC, Schonbrunn A, Taylor JE, Reisine T (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88. doi:10.1016/S0165-6147(00)88988-9

    Article  CAS  PubMed  Google Scholar 

  3. Tichomirowa MA, Daly A, Beckers A (2005) Treatment of pituitary tumors: somatostatin. Endocrine 28:093–100. doi:10.1385/ENDO:28:1:093

    Article  CAS  Google Scholar 

  4. Shimon I, Taylor J, Dong J, Bitonte R, Kim S, Morgan B, Coy DH, Culler MD, Melmed S (1997) Somatostatin receptor subtype specificity in human fetal pituitary cultures. Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J Clin Investig 99:789–798. doi:10.1172/JCI119225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hugues J, Epelbaum J, Voiroh M, Sebaoun J, Kordon C, Enjalbert A (1986) Involvement of endogenous somatostatin in the regulation of thyrotroph secretion during acute and chronic changes in diet. Neuroendocrinology 43:435–439

    Article  CAS  PubMed  Google Scholar 

  6. Iversen J (1974) Inhibition of pancreatic glucagon release by somatostatin: in vitro. Scand J Clin Lab Investig 33:125–129. doi:10.1080/00365517409082479

    Article  CAS  Google Scholar 

  7. Curry DL, Bennett LL (1976) Does somatostatin inhibition of insulin secretion involve two mechanisms of action? Proc Natl Acad Sci USA 73:248–251. doi:10.1073/pnas.73.1.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raptis S, Schlegel W, Lehmann E, Dollinger H, Zoupas C (1978) Effects of somatostatin on the exocrine pancreas and the release of duodenal hormones. Metabolism 27:1321–1328. doi:10.1016/0026-0495(78)90066-5

    Article  CAS  PubMed  Google Scholar 

  9. Pittaluga A, Feligioni M, Longordo F, Arvigo M, Raiteri M (2004) Somatostatin-induced activation and up-regulation of N-methyl-D-aspartate receptor function: mediation through calmodulin-dependent protein kinase II, phospholipase C, protein kinase C, and tyrosine kinase in hippocampal noradrenergic nerve endings. J Pharmacol Exp Ther 313:242–249. doi:10.1124/jpet.104.079590

    Article  PubMed  Google Scholar 

  10. Chisholm C, Greenberg G (2002) Somatostatin-28 regulates GLP-1 secretion via somatostatin receptor subtype 5 in rat intestinal cultures. Am J Physiol Endocrinol Metab 283:311–317. doi:10.1152/ajpendo.00434.2001

    Article  Google Scholar 

  11. Ösapay G, Ösapay K (1998) Therapeutic applications of somatostatin analogues. Expert Opin Ther Pat 8:855–870. doi:10.1517/13543776.8.7.855

    Article  Google Scholar 

  12. Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC (1999) Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes 48:77–85. doi:10.2337/diabetes.48.1.77

    Article  CAS  PubMed  Google Scholar 

  13. Mitra S, Mezey E, Hunyady B, Chamberlain L, Hayes E, Foor F, Wang Y, Schonbrunn A, Schaeffer JM (1999) Colocalization of somatostatin receptor sst5 and insulin in rat pancreatic \(\beta \)-cells. Endocrinology 140:3790–3796. doi:10.1210/endo.140.8.6937

    Article  CAS  PubMed  Google Scholar 

  14. Pita-Gutierrez F, Pertega-Diaz S, Pita-Fernandez S, Pena L, Lugo G, Sangiao-Alvarellos S, Cordido F (2013) Place of preoperative treatment of acromegaly with somatostatin analog on surgical outcome: a systematic review and meta-analysis. PLoS ONE 8:e61523. doi:10.1371/journal.pone.0061523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puig-Domingo M, Luque R, Reverter J, Lopez-Sanchez L, Gahete M, Culler M, Díaz-Soto G, Lomeña F, Squarcia M, Mate J, Mora M, Fernández-Cruz L, Vidal O, Alastrué A, Balibrea J, Halperin I, Mauricio D, Castaño J (2014) The truncated isoform of somatostatin receptor5 (sst5TMD4) is associated with poorly differentiated thyroid cancer. PLoS ONE 9:e85527. doi:10.1371/journal.pone.0085527

    Article  PubMed  PubMed Central  Google Scholar 

  16. Atkinson H, England J, Rafferty A, Jesudason V, Bedford K, Karsai L, Atkin SL (2013) Somatostatin receptor expression in thyroid disease. Int J Exp Pathol 94:226–229. doi:10.1111/iep.12024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood A, Lamberts S, van der Lely A, de Herder W, Hofland L (1996) Octreotide. N Engl J Med 334:246–254. doi:10.1056/NEJM199601253340408

    Article  Google Scholar 

  18. Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless J (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140. doi:10.1016/0024-3205(82)90087-X

    Article  CAS  PubMed  Google Scholar 

  19. Cives M, Strosberg J (2015) The expanding role of somatostatin analogs in gastroenteropancreatic and lung neuroendocrine tumors. Drugs 75:847–858. doi:10.1007/s40265-015-0397-7

  20. Caron P, Morange-Ramos I, Cogne M, Jaquet P (1997) Three year follow-up of acromegalic patients treated with intramuscular slow-release lanreotide 1. J Clin Endocrinol Metab 82:18–22. doi:10.1210/jcem.82.1.3714

    CAS  PubMed  Google Scholar 

  21. Caron P, Beckers A, Cullen D, Goth M, Gutt B, Laurberg P, Pico AM, Valimaki M, Zgliczynski W (2002) Efficacy of the new long-acting formulation of lanreotide (lanreotide autogel) in the management of acromegaly. J Clin Endocrinol Metab 87:99–104. doi:10.1007/BF03346453

    Article  CAS  PubMed  Google Scholar 

  22. Nehring R, Meyerhof W, Richter D (1995) Aspartic acid residue 124 in the third transmembrane domain of the somatostatin receptor subtype 3 is essential for somatostatin-14 binding. DNA Cell Biol 14:939–944. doi:10.1089/dna.1995.14.939

    Article  CAS  PubMed  Google Scholar 

  23. Webb B, Sali A (2014) Comparative protein structure modeling using modeller. Curr Protoc Bioinform. doi:10.1002/0471250953.bi0506s47

    Google Scholar 

  24. SYBYL-X 1.1, Tripos International, 1699 South Hanley Road, St. Louis, MO, 63144-2319, USA

  25. UniProt Consortium(2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. doi:10.1093/nar/gku989

  26. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  27. Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren JH, Xiong XQ, Sha Y, Yan MC, Lin B, Wang J, Jing YK, Zhao DM, Cheng MS (2008) Structure prediction and R115866 binding study of human CYP26A1: homology modelling, fold recognition, molecular docking and MD simulations. Mol Sim 34:337–346. doi:10.1080/08927020801930562

    Article  CAS  Google Scholar 

  30. Esposito EX, Tobi D, Madura JD (2006) Comparative protein modeling In: Lipkowitz KB, Gillet V, Cundari TR, Boyd DB (eds) Reviews in Computational Chemistry. vol 22. John Wiley & Sons, Inc., USA, pp 57–167

  31. Kuntal B, Aparoy P, Reddanna P (2010) EasyModeller: A graphical interface to MODELLER. BMC Res Notes 3:226. doi:10.1186/1756-0500-3-226

    Article  PubMed  PubMed Central  Google Scholar 

  32. McGuffin L, Atkins J, Salehe B, Shuid A, Roche D (2015) IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res 43:169–173. doi:10.1093/nar/gkv236

    Article  Google Scholar 

  33. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2014) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. doi:10.1038/nmeth.3213

    Article  Google Scholar 

  34. Colovos C, Yeates T (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lovell S, Davis I, Arendall W, de Bakker P, Word J, Prisant M, Richardson J, Richardson D (2003) Structure validation by C-alpha geometry: phi, psi and C-beta deviation. Proteins 50:437–450. doi:10.1002/prot.10286

    Article  CAS  PubMed  Google Scholar 

  36. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 5:83–85. doi:10.1038/356083a0

    Article  Google Scholar 

  37. Markus W, Manfred J (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. doi:10.1093/nar/gkm290

    Article  Google Scholar 

  38. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277. doi:10.1002/prot.21715

    Article  CAS  PubMed  Google Scholar 

  39. Powell M (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–162. doi:10.1093/comjnl/7.2.155

    Article  Google Scholar 

  40. Clark M, Cramer R, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012. doi:10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  41. Martin R, Mohr P, Maerki H, Guba W, Kuratli C, Gavelle O, Binggeli A, Bendels S, Alvarez-Sánchez R, Alker A, Polonchuk L, Christ D (2009) Benzoxazole piperidines as selective and potent somatostatin receptor subtype 5 antagonists. Bioorg Med Chem Lett 19:6106–6113. doi:10.1016/j.bmcl.2009.09.024

    Article  CAS  PubMed  Google Scholar 

  42. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  43. Contour-Galcera M, Sidhu A, Plas P, Roubert P (2005) 3-Thio-1,2,4-triazoles, novel somatostatin sst2/sst5 agonists. Bioorg Med Chem Lett 15:3555–3559. doi:10.1016/j.bmcl.2005.05.061

    Article  CAS  PubMed  Google Scholar 

  44. Singh T, Biswas D, Jayaram B (2011) AADS—an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51:2515–2527. doi:10.1021/ci200193z

    Article  CAS  PubMed  Google Scholar 

  45. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511. doi:10.1021/jm020406h

    Article  CAS  PubMed  Google Scholar 

  46. Jain AN (1996) Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput-Aided Mol Des 10:427–440. doi:10.1007/BF00124474

    Article  CAS  PubMed  Google Scholar 

  47. Jain AN (2006) Scoring functions for protein-ligand docking. Curr Protein Pept Sci 7:407–420. doi:10.2174/138920306778559395

    Article  CAS  PubMed  Google Scholar 

  48. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791. doi:10.1002/jcc.21256

    Article  Google Scholar 

  49. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  50. Comeau S, Gatchell D, Vajda S, Camacho C (2003) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50. doi:10.1093/bioinformatics/btg371

    Article  Google Scholar 

  51. Comeau S, Gatchell D, Vajda S, Camacho C (2004) ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res 32:96–99. doi:10.1093/nar/gkh354

    Article  Google Scholar 

  52. Lensink M, Wodak S (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095. doi:10.1002/prot.24428

    Article  CAS  PubMed  Google Scholar 

  53. Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall D, Vajda S (2013) How good is automated protein docking? Proteins 81:2159–2166. doi:10.1002/prot.24403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kozakov D, Brenke R, Comeau S, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406. doi:10.1002/prot.21117

    Article  CAS  PubMed  Google Scholar 

  55. Cramer R, Patterson D, Bunce J (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967. doi:10.1021/ja00226a005

  56. Wold S, Albano C, Dunn W, Edlund U, Esbenseb K, Geladi P, Hellberg S, Johanssn E, Lindberg W, Sjostrom M (1984) Multivariate data analysis in chemistry. In: Kowalski B (ed) Chemometrics: mathematics and statistics in chemistry. vol 138. Springer, Netherlands, pp 17–95

  57. Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405. doi:10.1080/00401706.1978.10489693

  58. Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7:217–227. doi:10.2174/138920306777452312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinform. doi:10.1002/0471250953.bi0506s15

    Google Scholar 

  60. Obiol-Pardo C, Rubio-Martinez J (2009) Homology modeling of human Transketolase: description of critical sites useful for drug design and study of the cofactor binding mode. J Mol Graphics Model l27:723–734. doi:10.1016/j.jmgm.2008.11.005

    Article  Google Scholar 

  61. Kothandan G, Gadhe C, Madhavan T, Cho S (2011) Binding site analysis of CCR2 through in silico methodologies: docking, CoMFA, and CoMSIA. Chem Biol Drug Des 78:161–174. doi:10.1111/j.1747-0285.2011.01095.x

    Article  CAS  PubMed  Google Scholar 

  62. Spadola L, Novellino E, Folkers G, Scapozza L (2003) Homology modelling and docking studies on Varicella Zoster Virus Thymidine kinase. Eur J Med Chem 38:413–419. doi:10.4103/0250-474X.102537

    Article  CAS  PubMed  Google Scholar 

  63. Fazil M, Kumar S, Subbarao N, Pandey H, Singh D (2009) Homology modelling of a sensor histidine kinase from Aeromonas hydrophila. J Mol Model 16:1003–1009. doi:10.1007/s00894-009-0602-2

    Article  PubMed  Google Scholar 

  64. Gugan K, Seung JC (2013) Homology modeling of GPR18 receptor, an orphan G-protein-coupled receptor. J Chosun Natl Sci 6:16–20. doi:10.13160/ricns.2013.6.1.016

    Article  Google Scholar 

  65. Shahlaei M, Madadkar-Sobhani A, Mahnam K, Fassihi A, Saghaie L, Mansourian M (2011) Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation. Biochim Biophys Acta Biomembr 1808:802–817. doi:10.1016/j.bbamem.2010.12.004

    Article  CAS  Google Scholar 

  66. Wu B, Zhang Y, Kong J, Zhang X, Cheng S (2009) In silico prediction of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking. Toxicol Lett 191:69–73. doi:10.1016/j.toxlet.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  67. Rolland C, Gozalbes R, Nicolai E, Paugam M, Coussy L, Barbosa F, Horvath D, Revah F (2005) G-protein-coupled receptor affinity prediction based on the use of a profiling dataset: QSAR design, synthesis, and experimental validation. J Med Chem 48:6563–6574. doi:10.1021/jm0500673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported (in part) by Start-Up Research Grant for Young Scientist (SB/YS/LS-128/2013), funded by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. The authors thank SRM University for their continuous support and the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumurthy Madhavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 789 KB)

Supplementary material 2 (docx 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, S.K., Babu, S. & Madhavan, T. Theoretical analysis of somatostatin receptor 5 with antagonists and agonists for the treatment of neuroendocrine tumors. Mol Divers 21, 367–384 (2017). https://doi.org/10.1007/s11030-016-9722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9722-7

Keywords

Navigation