Skip to main content
Log in

Synthesis, in vitro biological activity and docking of new analogs of BIM-23052 containing unnatural amino acids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Somatostatin (SST) is an endogenous cyclic tetradecapeptide hormone that exerts multiple biological activities via a family of five receptors. BIM-23052 (DC-23-99) d-Phe-Phe-Phe-d-Trp-Lys-Thr-Phe-Thr-NH2 is a linear SST analog with established in vitro GH-inhibitory activity and high affinity to sstr5, sstr3 and sstr2. The different SSTR subtypes are expressed in different tissues and in some tumor cells. Based on this finding, a series of new analogs of BIM-23052 with expected antitumor activity have been synthesized. The Thr at position 6 in BIM-23052 was replaced by the conformationally hindered Tle, Aib, Ac5c and Ac6c of the new analogs. The peptides were synthesized by standard solid-phase peptide chemistry methods, Fmoc strategy. The cytotoxic effects of the compounds were tested in vitro against a panel of tumor cell lines: HT-29, MDA-MB-23, Hep-G2, HeLa and the normal human diploid cell line Lep-3. All five somatostatin receptor subtypes were modeled and docking was performed to determine the binding affinity of the analogs. The new peptides exhibited different concentration-dependent antiproliferative effect on the tumor cell lines after 24 h of treatment. The compound 3B (Aib6) demonstrated the most pronounced antiproliferative effects on HepG-2 cells with the IC50 = 0.01349 nM. Docking confirmed that all compounds bind well to SST receptors with preference to sstr3 and sstr5, which is most probably the reason for the observed biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7: A

Similar content being viewed by others

References

  • Appetecchia M, Baldelli R (2010) Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives. J Exp Clin Cancer Res 29:1–19. https://doi.org/10.1186/1756-9966-29-19

    Article  CAS  Google Scholar 

  • Banks WA, Schally AV, Barrera CM, Fasold MB, Durham DA, Csernus VJ, Kastin AJ (1990) Permeability of the murine blood-brain barrier to some octapeptide analogs of somatostatin. Proc Natl Acad Sci USA 87:6762–6766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, Fletcher WS (1993) Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J Surg Res 55:446–450

    Article  CAS  PubMed  Google Scholar 

  • Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Petcher TJ, Pless J (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Breder CD, Yamada Y, Yasuda K, Seino S, Saper CB, Bell GI (1992) Differential expression of somatostatin receptor subtypes in brain. J Neurosci 12:3920–3934. https://doi.org/10.1523/jneurosci.12-10-03920.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns C, Weckbecker G, Raulf F, Kaupmann K, Schoeffter P, Hoyer D, Lubbert H (1994) Molecular pharmacology of somatostatin-receptor subtypes. Ann NY Acad Sci 733:138–146

    Article  CAS  PubMed  Google Scholar 

  • Buscail L, Delesque N, Esteve JP, Saint-Laurent N, Prats H, Clerc P, Robberecht P, Bell GI, Liebow C, Schally AV (1994) Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci USA 91:2315–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai RZ, Szoke B, Lu R, Fu D, Redding TW, Schally AV (1986) Synthesis and biological activity of highly potent octapeptide analogs of somatostatin. Proc Natl Acad Sci USA 83:1896–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso A, El Ghamrawy C, Gautron JP, Horvat B, Gautier N, Enjalbert A, Krantic S (1998) Somatostatin increases mitogen-induced IL-2 secretion and proliferation of human Jurkat T-cells via sst3 receptor isotype. J Cell Biochem 68:62–73

    Article  CAS  PubMed  Google Scholar 

  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. https://doi.org/10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta P (2004) Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther 102:61–85. https://doi.org/10.1016/j.pharmthera.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  • Dinnendahl V, Fricke U (2010) Arzneistoff-Profile 8 (23). Govi Pharmazeutischer Verlag, Eschborn

    Google Scholar 

  • Florio T, Scorziello A, Fattore M, D’Alto V, Salzano S, Rossi G, Belringieri MT, Fusco A, Schettini G (1996) Somatostatin inhibits PC C13 thyroid cell proliferation through the modulation of phosphotyrosine phosphatase activity. J Biol Chem 271:6129–6136

    Article  CAS  PubMed  Google Scholar 

  • Haberfeld H (2009) Austria-codex, 2009/2010 edn. Österreichischer Apothekerverlag, Vienna

    Google Scholar 

  • Horváth A, Vadász Zs, Szende B, Vincze B, Mák M, Idei M, Venetianer A, Bökönyi Gy, Vántus T, Mezo I, Kéri Gy (1998) Systematic structure-activity relationship studies of the antitumor peptide TT-232, Peptides 1998. In: Bajusz S., Hudecz F. (eds) Proceedings of the 25th European peptide symposium, Budapest, Hungary, August 30–September 4, Akadémiai Kiadó, Budapest, pp 494–495

  • Karle IL, Balaram P (1990) Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 29:6747–6756. https://doi.org/10.1021/bi00481a001

    Article  CAS  PubMed  Google Scholar 

  • Lahlou H, Saint-Laurent N, Esteve J-P, Pradayrol AL, Pyronnet S, Susini C (2003) Sst2 somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-raf-dependent ERK2 activation. J Biol Chem 278:39356–39371

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss D, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Meyerhof W (1998) The elucidation of somatostatin receptor functions: a current view. Rev Physiol Biochem Pharmacol 133:55–105

    Article  CAS  PubMed  Google Scholar 

  • Molecular Operating Environment (MOE) 2012.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012. http://www.chemcomp.com

  • Møller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Biochim Biophys Acta 1616:1–84

    Article  CAS  PubMed  Google Scholar 

  • Moreau JP, Kim S, Dong JZ, Ignatious F, Jackson S, Moreau SC, Morgan BA, Touraud F, Taylor JE, Tissier B, Pellet M, Murphy W, Davis T (1996) Improved analogs and novel delivery systems for somatostatin octapeptides. Metabolism 45:24–26

    Article  CAS  PubMed  Google Scholar 

  • Naydenova ED, Wesselinova DW, Staykova ST, Goshev IG, Vezenkov LT (2018) Synthesis, cytotoxicity and antioxidant activity of new analogs of RC-121 synthetic derivatives of somatostatin. Anticancer Agents Med Chem 18:1417–1424. https://doi.org/10.2174/1871520618666180417164344

    Article  CAS  PubMed  Google Scholar 

  • Nilsson S, Reubi JC, Kalkner K-M, Laissue JA, Horisberger U, Olerud C, Westlin J-E (1995) Metastatic hormone-refractory prostatic adenocarcinoma expresses somatostatin receptors and is visualized in vivo by [111In]-labeled DTPA-D-[Phe1]-octreotide scintigraphy. Cancer Res 55:5805–5810

    Google Scholar 

  • Patel YC (1997) Molecular pharmacology of somatostatin receptor subtypes. J Endocrinol Invest 20:348–367. https://doi.org/10.1007/BF03350317

    Article  CAS  PubMed  Google Scholar 

  • Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198. https://doi.org/10.1006/frne.1999.0183

    Article  CAS  PubMed  Google Scholar 

  • Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB (1995) The somatostatin receptor family. Life Sci 57:1249–1265

    Article  CAS  PubMed  Google Scholar 

  • Paz-Bouza JI, Redding TW, Schally AV (1987) Treatment of nitrosamine-induced pancreatic tumors in hamsters with analogs of somatostatin and luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 84(4):1112–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak M (1997) The potential role of somatostatin analogues in breast cancer treatment. Yale J of Biol Med 70:535–539

    CAS  Google Scholar 

  • Pollak MN, Shally AV (1998) Mechanisms of antineoplastic action of somatostatin analogs. Proc Soc Exp Biol Med 217:143–152

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Rao RB, Balaram P (1995) Contrasting solution conformations of peptides containing alpha, alpha-dialkylated residues with linear and cyclic side chains. Biopolymers 35:11–20. https://doi.org/10.1002/bip.360350103

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Mathur A, Sharma R, Gupta N, Ahuja R, Jaggi M, Sindh TA, Mukherjee R (2006) Octapeptide analogs of somatostatin containing dialkylated amino acids with potent anticancer activity. Int J Pept Res Ther 12:179–185

    Article  CAS  Google Scholar 

  • Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C (2008) Antitumor effect of somatostatin. Mol Cell Endocrinol 286:230–237. https://doi.org/10.1016/j.mce.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  • Reisine T, Bell GI (1995) Molecular biology of somatostatin receptors. Endocr Rev 16:427–442. https://doi.org/10.1210/edrv-16-4-427

    Article  CAS  PubMed  Google Scholar 

  • Reubi J-C, Waser B, Schaer JC, Markwalder R (1995) Somatostatin receptors in human prostate and prostate cancer. J Clin Endocrinol Metab 80:2806–2814. https://doi.org/10.1210/jcem.80.9.7673428

    Article  CAS  PubMed  Google Scholar 

  • Reubi JC, Waster B, Schaer JC, Laissue JA (2001) Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28:836–846

    Article  CAS  PubMed  Google Scholar 

  • Rose DP, Gottardis M, Noonan JJ (1983) Rat mammary carcinoma regressions during suppression of serum growth hormone and prolactin. Anticancer Res 3:323–325

    CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Schally AV (1988) Oncological applications of somatostatin analogues 1. Cancer Res 48:6977–6985

    CAS  PubMed  Google Scholar 

  • Schally AV, Redding TW (1987) Somatostatin analogs as adjuncts to agonists of luteinizing hormone-releasing hormone in the treatment of experimental prostate cancer. Proc Natl Acad Sci USA 84:7275–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schally AV, Comaru-Schally AM, Redding TW (1984a) Antitumor effects of analogs of hypothalamic hormones in endocrine-dependent cancers. Proc Soc Exp Biol Med 175:259–281

    Article  CAS  PubMed  Google Scholar 

  • Schally AV, Redding TW, Comaru-Schally AM (1984b) Potential use of analogs of luteinizing hormone-releasing hormones in the treatment of hormone-sensitive neoplasms. Cancer Treat Rep 68:281–289

    CAS  PubMed  Google Scholar 

  • Shimon I (2003) Somatostatin receptors in pituitary and development of somatostatin receptor subtype-selective analogs. Endocrine 20:265–269. https://doi.org/10.1385/endo:20:3:265

    Article  CAS  PubMed  Google Scholar 

  • Staykova S, Naydenova E, Wesselinova D, Kalistratova A, Vezenkov L (2012a) Synthesis and in vitro study of the anticancer activity of new analogs of Octreotide. Prot Pept Lett 19:1257–1262. https://doi.org/10.2174/092986612803521611

    Article  CAS  Google Scholar 

  • Staykova ST, Mihaylova BD, Goshev IG, Wesselinova DW, Vezenkov LT, Naydenova ED (2012b) Antioxidant capacity of new analogs of Octreotide. Bulg Chem Commun 44:233–237

    CAS  Google Scholar 

  • Staykova S, Naydenova E, Wesselinova D, Vezenkov L (2012c) Synthesis and in vitro antitumor activity of new linear somatostatin analogs. JUCTM 47:297–302

    CAS  Google Scholar 

  • Staykova ST, Wesselinova DW, Vezenkov LT, Naydenova ED (2015) Synthesis and in vitro antitumor activity of new octapeptide analogs of somatostatin containing unnatural amino acids. Amino Acids 47:1007–1013. https://doi.org/10.1007/s00726-015-1929-x

    Article  CAS  PubMed  Google Scholar 

  • Strosberg J, Kvols L (2010) Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol 16:2963–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susini C, Buscail L (2006) Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol 17:1733–1742. https://doi.org/10.1093/annonc/mdl105

    Article  CAS  PubMed  Google Scholar 

  • Szende BA, Zalatnai A, Schally AV (1989) Programmed cell death (apoptosis) in pancreatic cancers of hamsters after treatment with analogs of both luteinizing hormone-releasing hormone and somatostatin. Proc Natl Acad Sci USA 86:1643–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veber DF, Holly FW, Nutt RF, Bergstrand SJ, Brandy RF, Hirschmann R, Glitzer MS, Saperstein R (1979) Highly active cyclic and bicyclic somatostatin analogues of reduced ring size. Nature (London) 280:512–514

    Article  CAS  Google Scholar 

  • Veber DF, Freidinger RM, Perlow DS, Paleveda WJ, Holly FW, Strachan RG, Nutt RF, Arison BH, Homnick C, Randall WC, Glitzer MS, Saperstein R, Hirschmann R (1981) A potent cyclic hexapeptide analogue of somatostatin. Nature (London) 292:55–58

    Article  CAS  Google Scholar 

  • Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017. https://doi.org/10.1038/nrd1255

    Article  CAS  PubMed  Google Scholar 

  • Zalatnai A, Paz-Bouza JI, Redding TW, Schally AV (1988) Histologic changes in the rat prostate cancer model after treatment with somatostatin analogs and D-Trp-6-LH-RH. Prostate (NY) 12:85–98

    Article  CAS  Google Scholar 

  • Zou Y, Xiao X, Li Y, Zhou T (2009) Somatostatin analogues inhibit cancer cell proliferation in an SSTR2-dependent manner via both cytostatic and cytotoxic pathways. Oncol Rep 21:379–386. https://doi.org/10.3892/or_00000233

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Bulgarian National Fund of Scientific Research at the Ministry of Education and Science, Grant No. DN 19/17, 20.12.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Naydenova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with animals or humans performed by any of the authors.

Informed consent

All authors are aware of the details of their research work that are published in the current paper and give their consent to their publication.

Additional information

Handling Editor: J. D. Wade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naydenova, E., Wesselinova, D., Staykova, S. et al. Synthesis, in vitro biological activity and docking of new analogs of BIM-23052 containing unnatural amino acids. Amino Acids 51, 1247–1257 (2019). https://doi.org/10.1007/s00726-019-02758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02758-7

Keywords

Navigation