Skip to main content
Log in

Analysis of B-Raf\(^{\mathrm{V600E}}\) inhibitors using 2D and 3D-QSAR, molecular docking and pharmacophore studies

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the present work, a molecular modeling study was carried out using 2D and 3D quantitative structure-activity relationships for the various series of compounds known as B-Raf\(^{\mathrm{V600E}}\) inhibitors. For 2D-QSAR analysis, a linear model was developed by MLR based on GA-OLS with appropriate results \((Q^{2}_{\mathrm{LOO}}= 0.796, R^{2}_{\mathrm{train}}= 0.827)\), which was validated by several external validation techniques. To perform a 3D-QSAR analysis, CoMFA and CoMSIA methods were used. The selected CoMFA model could provide reliable statistical values \((Q^{2}_{\mathrm{LOO}} = 0.683, r^{2} = 0.947)\) based on the training set in the biases of the selected alignment. Using the same selected alignment, a statistically reliable CoMSIA model, out of thirty-one different combinations, was also obtained \((Q^{2}_{\mathrm{LOO}}= 0.645, r^{2} = 0.897)\). The predictive accuracy of the derived models was rigorously evaluated with the external test set of nineteen compounds based on several validation techniques. Molecular docking simulations and pharmacophore analyses were also performed to derive the true conformations of the most potent inhibitors with B-Raf\(^{\mathrm{V600E}}\) kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray-Schopfer V, Dias S, Marais R (2005) The role of B-RAF in melanoma. Cancer Metastasis Rev 24:165–183. doi:10.1007/s10555-005-5865-1

    Article  CAS  PubMed  Google Scholar 

  2. Morrison D, Daar I (2006) RAS and the RAF/MEK/ERK Cascade. In: Der C (ed) RAS Family GTPases. Proteins and cell regulation, vol 4. Springer, Dordrecht, pp 67–93. doi:10.1007/1-4020-4708-8_4

  3. Zebisch A, Troppmair J (2006) Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci 63:1314–1330. doi:10.1007/s00018-006-6005-y

    Article  CAS  PubMed  Google Scholar 

  4. Basto D, Trovisco V, Lopes J, Martins A, Pardal F, Soares P, Reis R (2005) Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathol 109:207–210. doi:10.1007/s00401-004-0936-x

    Article  CAS  PubMed  Google Scholar 

  5. McCubrey J, Bertrand F, Steelman L, Chang F, Terrian D, Franklin R (2007) Critical roles of the Raf/MEK/ERK pathway in apoptosis and drug resistance. In: Srivastava R (ed) Apoptosis, cell signaling, and human diseases. Humana Press, New York, pp 101–134. doi:10.1007/978-1-59745-199-4_5

  6. Brown MD, Sacks DB (2008) Compartmentalised MAPK pathways. In: Klussmann E, Scott J (eds) Protein-protein interactions as new drug targets, vol 186 of handbook of experimental pharmacology. Springer, Berlin, pp 205–235. doi:10.1007/978-3-540-72843-6_9

  7. Nucera C, Goldfarb M, Hodin R, Parangi S (2009) Role of B-Raf\(^{{\rm V600E}}\) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf\(^{{\rm V600E}}\). BBA-Rev Cancer 1795:152–161. doi:10.1016/j.bbcan.2009.01.003

    CAS  Google Scholar 

  8. Hooijkaas AI, Gadiot J, van der Valk M, Mooi WJ, Blank CU (2012) Targeting BRAFV600E in an inducible murine model of melanoma. Am J Pathol 181:785–794. doi:10.1016/j.ajpath.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  9. Shepherd C, Puzanov I, Sosman J (2010) B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep 12:146–152. doi:10.1007/s11912-010-0095-2

    Article  CAS  PubMed  Google Scholar 

  10. Gray-Schopfer V, Dias S, Marais R (2005) Erratum, the role of B-RAF in melanoma. Cancer Metastasis Rev 24:367–367. doi:10.1007/s10555-005-1585-9

    Article  Google Scholar 

  11. Stellwagen JC, Adjabeng GM, Arnone MR, Dickerson SH, Han C, Hornberger KR, King AJ, Mook RA Jr, Petrov KG, Rheault TR, Rominger CM, Rossanese OW, Smitheman KN, Waterson AG, Uehling DE (2011) Development of potent B-RafV600E inhibitors containing an arylsulfonamide headgroup. Bioorg Med Chem Lett 21:4436–4440. doi:10.1016/j.bmcl.2011.06.021

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Berger DM, Salaski EJ, Torres N, Hu Y, Levin JI, Powell D, Wojciechowicz D, Collins K, Frommer E (2009) Discovery of highly potent and selective type I B-Raf kinase inhibitors. Bioorg Med Chem Lett 19:6571–6574. doi:10.1016/j.bmcl.2009.10.030

    Article  CAS  PubMed  Google Scholar 

  13. Ren L, Ahrendt KA, Grina J, Laird ER, Buckmelter AJ, Hansen JD, Newhouse B, Moreno D, Wenglowsky S, Dinkel V, Gloor SL, Hastings G, Rana S, Rasor K, Risom T, Sturgis HL, Voegtli WC, Mathieu S (2012) The discovery of potent and selective pyridopyrimidin-7-one based inhibitors of B-Raf\(^{{\rm V600E}}\) kinase. Bioorg Med Chem Lett 22:3387–3391. doi:10.1016/j.bmcl.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  14. Chapman P, Flaherty K (2012) Targeted Inhibition of B-Raf. In: Gajewski TF, Hodi FS (eds) Targeted therapeutics in melanoma. Current clinical oncology. Springer, New York, pp 63–76. doi:10.1007/978-1-61779-407-0_5

  15. Fedorenko IV, Paraiso KHT, Smalley KSM (2011) Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol 82:201–209. doi:10.1016/j.bcp.2011.05.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ramurthy S, Costales A, Jansen JM, Levine B, Renhowe PA, Shafer CM, Subramanian S (2012) Design and synthesis of 6,6-fused heterocyclic amides as raf kinase inhibitors. Bioorg Med Chem Lett 22:1678–1681. doi:10.1016/j.bmcl.2011.12.112

    Article  CAS  PubMed  Google Scholar 

  17. Wenglowsky S, Moreno D, Laird ER, Gloor SL, Ren L, Risom T, Rudolph J, Sturgis HL, Voegtli WC (2012) Pyrazolopyridine inhibitors of B-Raf\(^{{\rm V600E}}\). Part 4: rational design and kinase selectivity profile of cell potent type II inhibitors. Bioorg Med Chem Lett 22:6237–6241. doi:10.1016/j.bmcl.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  18. Ren L, Wenglowsky S, Miknis G, Rast B, Buckmelter AJ, Ely RJ, Schlachter S, Laird ER, Randolph N, Callejo M, Martinson M, Galbraith S, Brandhuber BJ, Vigers G, Morales T, Voegtli WC, Lyssikatos J (2011) Non-oxime inhibitors of B-Raf\(^{{\rm V600E}}\) kinase. Bioorg Med Chem Lett 21:1243–1247. doi:10.1016/j.bmcl.2010.12.061

    Article  CAS  PubMed  Google Scholar 

  19. Wenglowsky S, Ahrendt KA, Buckmelter AJ, Feng B, Gloor SL, Gradl S, Grina J, Hansen JD, Laird ER, Lunghofer P, Mathieu S, Moreno D, Newhouse B, Ren L, Risom T, Rudolph J, Seo J, Sturgis HL, Voegtli WC, Wen Z (2011) Pyrazolopyridine inhibitors of B-Raf\(^{{\rm V600E}}\). Part 2: structure-activity relationships. Bioorg Med Chem Lett 21:5533–5537. doi:10.1016/j.bmcl.2011.06.097

    Article  CAS  PubMed  Google Scholar 

  20. Wenglowsky S, Moreno D, Rudolph J, Ran Y, Ahrendt KA, Arrigo A, Colson B, Gloor SL, Hastings G (2012) Pyrazolopyridine inhibitors of B-Raf\(^{{\rm V600E}}\). Part 3: an increase in aqueous solubility via the disruption of crystal packing. Bioorg Med Chem Lett 22:912–915. doi:10.1016/j.bmcl.2011.12.030

    Article  CAS  PubMed  Google Scholar 

  21. Wenglowsky S, Ren L, Ahrendt KA, Laird ER, Aliagas I, Alicke B, Buckmelter AJ, Choo EF, Dinkel V, Feng B, Gloor SL, Gould SE, Gross S, Gunzner-Toste J, Hansen Joshua D, Hatzivassiliou G, Liu Bonnie, Malesky K, Mathieu S, Newhouse B, Raddatz NJ, Ran Y, Rana S, Randolph N, Risom T, Rudolph J, Savage S, Selby LT, Shrag M, Song K, Sturgis HL, Voegtli WC, Wen Z, Willis BS, Woessner RD, Wu W-I, Young WB, Grina J (2011) Pyrazolopyridin e Inhibitors of B-Raf\(^{{\rm V600E}}\). Part 1: the development of selective, orally bioavailable, and efficacious inhibitors. ACS Med Chem Lett 2:342–347. doi:10.1021/ml200025q

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network. Monatsh Chem 139:1423–1431. doi:10.1007/s00706-008-0951-z

    Article  CAS  Google Scholar 

  23. Pourbasheer E, Riahi S, Ganjali MR, Norouzi P (2010) QSAR study on melanocortin-4 receptors by support vector machine. Eur J Med Chem 45:1087–1093. doi:10.1016/j.ejmech.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Riahi S, Ganjali M, Pourbasheer E, Norouzi P (2008) QSRR study of GC retention indices of essential-oil compounds by multiple linear regression with a genetic algorithm. Chroma 67:917–922. doi:10.1365/s10337-008-0608-4

    Article  CAS  Google Scholar 

  25. Riahi S, Pourbasheer E, Ganjali MR, Norouzi P (2009) Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: concerns to support vector machine. J Hazard Mater 166:853–859. doi:10.1016/j.jhazmat.2008.11.097

    Article  CAS  PubMed  Google Scholar 

  26. Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P (2013) QSAR study of \(\alpha \)1\(\beta \)4 integrin inhibitors by GA-MLR and GA-SVM methods. Struct Chem 25:355–370. doi:10.1007/s11224-013-0300-7

    Article  Google Scholar 

  27. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2013) QSAR modeling: Where have you been? Where are you going to? J Med Chem 57:4977–5010. doi:10.1021/jm4004285

    Article  Google Scholar 

  28. Li J, Gramatica P (2010) The importance of molecular structures, endpoints’ values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders. Mol Divers 14:687–696. doi:10.1007/s11030-009-9212-2

    Article  CAS  PubMed  Google Scholar 

  29. Pourbasheer E, Riahi S, Ganjali MR, Norouzi P (2010) Quantitative structure-activity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activity by the genetic algorithm and multiple linear regression (GA-MLR) method. J Enzyme Inhib Med Chem 25:844–853. doi:10.3109/14756361003757893

    Article  CAS  PubMed  Google Scholar 

  30. Pourbasheer E, Riahi S, Ganjali MR, Norouzi P (2011) Prediction of solubility of fullerene C60 in various organic solvents by genetic algorithm-multiple linear regression. Fuller Nanotub Car N 19:585–598. doi:10.1080/1536383x.2010.504952

    Article  CAS  Google Scholar 

  31. Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2009) Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water. Monatsh Chem 140:15–27. doi:10.1007/s00706-008-0049-7

    Article  CAS  Google Scholar 

  32. Khajehsharifi H, Sadeghi M, Pourbasheer E (2009) Spectrophotometric simultaneous determination of ceratine, creatinine, and uric acid in real samples by orthogonal signal correction-partial least squares regression. Monatsh Chem 140:685–691. doi:10.1007/s00706-009-0155-1

    Article  CAS  Google Scholar 

  33. Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P (2013) QSAR study of IKK\(\beta \) inhibitors by the genetic algorithm: multiple linear regressions. Med Chem Res 23:57–66. doi:10.1007/s00044-013-0611-7

    Article  Google Scholar 

  34. Garcia-Domenech R, Zanni R, Galvez-Llompart M, Galvez J (2015) Predicting antiprotozoal activity of benzyl phenyl ether diamine derivatives through QSAR multi-target and molecular topology. Mol Divers 19:357–366. doi:10.1007/s11030-015-9575-5

    Article  CAS  PubMed  Google Scholar 

  35. Fratev F, Benfenati E (2005) 3D-QSAR and molecular mechanics study for the differences in the azole activity against yeastlike and filamentous fungi and their relation to P450DM inhibition, part 1. 3-Substituted-4(3H)-quinazolinones. J Chem Inf Model 45:634–644. doi:10.1021/ci0496494

    Article  CAS  PubMed  Google Scholar 

  36. Hopfinger AJ, Wang S, Tokarski JS, Jin B, Albuquerque M, Madhav PJ, Duraiswami C (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524. doi:10.1021/ja9718937

    Article  CAS  Google Scholar 

  37. Bhonsle JB, Venugopal D, Huddler DP, Magill AJ, Hicks RP (2007) Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem 50:6545–6553. doi:10.1021/jm070884y

    Article  CAS  PubMed  Google Scholar 

  38. Scott JS, Goldberg FW, Turnbull AV (2013) Medicinal chemistry of inhibitors of \(11\beta \)-hydroxysteroid dehydrogenase type 1 (\(11\beta \)-HSD1). J Med Chem 57:4466–4486. doi:10.1021/jm4014746

    Article  PubMed  Google Scholar 

  39. Nandi S, Bagchi M (2010) 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: a rational approach to anticancer drug design. Mol Divers 14:27–38. doi:10.1007/s11030-009-9137-9

    Article  CAS  PubMed  Google Scholar 

  40. Du Q-S, Gao J, Wei Y-T, Du L-Q, Wang S-Q, Huang R-B (2012) Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design. J Chem Inf Model 52:996–1004. doi:10.1021/ci300066y

    Article  CAS  PubMed  Google Scholar 

  41. Tosco P, Balle T (2011) A 3D-QSAR-driven approach to binding mode and affinity prediction. J Chem Inf Model 52:302–307. doi:10.1021/ci200411s

    Article  PubMed  Google Scholar 

  42. Tuccinardi T, Ortore G, Santos MAl, Marques SrM, Nuti E, Rossello A, Martinelli A (2009) Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors. J Chem Inf Model 49:1715–1724. doi:10.1021/ci900118v

    Article  CAS  PubMed  Google Scholar 

  43. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA), part 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967. doi:10.1021/ja00226a005

    Article  CAS  PubMed  Google Scholar 

  44. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146. doi:10.1021/jm00050a010

    Article  CAS  PubMed  Google Scholar 

  45. HyperChem (2002) Molecular modeling system. 7.03 edn. Hypercube, Inc., Gainesville

  46. Todeschini R, Consonni V, Mauri A, Pavan M (2005) DRAGON. Software for the calculation of molecular descriptors, 5.3 edn., Talete Srl, Milan

  47. Waller CL, Bradley MP (1999) Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationship studies. J Chem Inf Comp Sci 39:345–355. doi:10.1021/ci980405r

    Article  CAS  Google Scholar 

  48. Leardi R, Boggia R, Terrile M (1992) Genetic algorithms as a strategy for feature selection. J Chemom 6:267–281. doi:10.1002/cem.1180060506

    Article  CAS  Google Scholar 

  49. Hunger J, Huttner G (1999) Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks. J Comput Chem 20:455–471. doi:10.1002/(SICI)1096-987X(199903)20:4<455::AID-JCC6>3.0.CO;2-1

  50. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132. doi:10.1002/jcc.23361

    Article  CAS  Google Scholar 

  51. Manual HT (2006) SYBYL 7.3. Tripos International, St. Louis, Missouri

  52. Clark M, Cramer RD, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012. doi:10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  53. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  54. Folkers G, Merz A, Rognan D (1993) 3D-QSAR in drug design, theory, methods and applications. In: Kubinyi H (ed) ESCOM, Leiden, pp 583–618

  55. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comp Sci 29:163–172. doi:10.1021/ci00063a006

    Article  CAS  Google Scholar 

  56. Wold S, Ruhe A, Wold H, Dunn IW (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comp 5:735–743. doi:10.1137/0905052

    Article  Google Scholar 

  57. Bush B, Nachbar R Jr (1993) Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput Aid Mol Des 7:587–619. doi:10.1007/bf00124364

    Article  CAS  Google Scholar 

  58. Martin YC, Willett P (1998) Designing bioactive molecules: three-dimensional techniques and applications. American Chemical Society, Washington, DC

  59. Wehrens R, Putter H, Buydens LMC (2000) The bootstrap: a tutorial. Chemom Intell Lab Syst 54:35–52. doi:10.1016/S0169-7439(00)00102-7

  60. Pourbasheer E, Aalizadeh R, Ardabili JS, Ganjali MR (2015) QSPR study on solubility of some fullerenes derivatives using the genetic algorithms—multiple linear regression. J Mol Liquids 204:162–169. doi:10.1016/j.molliq.2015.01.028

    Article  CAS  Google Scholar 

  61. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145. doi:10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  63. Wolber G, Langer T (2004) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169. doi:10.1021/ci049885e

    Article  Google Scholar 

  64. Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J Comput Chem 34:1071–1082. doi:10.1002/jcc.23231

    Article  CAS  PubMed  Google Scholar 

  65. Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graph Model 20(4):269–276. doi:10.1016/S1093-3263(01)00123-1

  66. Eriksson L, Johansson E, Müller M, Wold S (2000) On the selection of the training set in environmental QSAR analysis when compounds are clustered. J Chemometr 14:599–616. doi:10.1002/1099-128x(200009/12)14:5/6<599::aid-cem619>3.0.co;2-8

  67. Pourbasheer E, Aalizadeh R, Shokouhi Tabar S, Ganjali MR, Norouzi P, Shadmanesh J (2014) 2D and 3D-QSAR study of hepatitis C virus NS5B polymerase inhibitors by CoMFA and CoMSIA methods. J Chem Inf Model 54:2902–2914. doi:10.1021/ci500216c

    Article  CAS  PubMed  Google Scholar 

  68. He S, Shao Y, Fan L, Che Z, Xu H, Zhi X, Wang J, Yao X, Qu H (2013) Synthesis and quantitative structure–activity relationship (QSAR) study of novel 4-acyloxypodophyllotoxin derivatives modified in the a and c rings as insecticidal agents. J Agric Food Chem 61:618–625. doi:10.1021/jf305011n

    Article  CAS  PubMed  Google Scholar 

  69. Pourbasheer E, Bazl R, Amanlou M (2014) Molecular docking and 3D-QSAR studies on the MAPKAP-K2 inhibitors. Med Chem Res 23:2252–2263. doi:10.1007/s00044-013-0820-0

    Article  CAS  Google Scholar 

  70. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045. doi:10.1021/ci00028a014

    Article  CAS  Google Scholar 

  71. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim. doi:10.1002/9783527613106

    Book  Google Scholar 

Download references

Acknowledgments

Reza Aalizadeh would like to thank the State Scholarships’ Foundation of Greece (I.K.Y.) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam Pourbasheer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 406 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalizadeh, R., Pourbasheer, E. & Ganjali, M.R. Analysis of B-Raf\(^{\mathrm{V600E}}\) inhibitors using 2D and 3D-QSAR, molecular docking and pharmacophore studies. Mol Divers 19, 915–930 (2015). https://doi.org/10.1007/s11030-015-9626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9626-y

Keywords

Navigation