Skip to main content
Log in

Stability Analysis of Axially Functionally Graded Heavy Column

  • Published:
Mechanics of Composite Materials Aims and scope

The stability of axially functionally graded (AFG) heavy columns was analyzed. Consideration in stability analysis of the column is given to the free vibration and bucking problems. The mass density and Young’s modulus of the AFG heavy column vary along the column axis through a power-law function. Unified modeling of the differential equations with the associated boundary conditions governing the deformed shape of the free vibrations and buckling of the column was developed. Using a combination of direct numerical integration method and numerical solution method of nonlinear equation, differential equations were solved to calculate the natural frequency and the critical buckling load. Calculation results for the natural frequency and buckling load compare well with the FEM results. As a result of numerical experiments, the effects of material and geometric properties on the natural frequency and the buckling load were reported and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. T. Horibe and K. Mori, “Large deflections of tapered cantilever beams made of axially functionally graded materials,” Mech. Eng. J., 5, No. 1, 1-10 (2015). https://doi.org/10.1299/mej.7-00268

    Article  Google Scholar 

  2. W. R. Chen and H. Chang, “Vibration analysis of functionally graded Timoshenko beams,” Int. J. Struct. Stab. Dy., 18, No. 1, 1850007 (2018). https://doi.org/10.1142/S0219455418500074

  3. A. E. Alshorbagy, M. A. Eltaher, and F. F. Mahmoud, “Free vibration characteristics of a functionally graded beam by finite element method,” App. Math. Mod., 35, 412-425 (2011). https://doi.org/10.1016/j.apm.2010.07.006

    Article  Google Scholar 

  4. N. Celebi, and N. Tutuncu, “Free vibration analysis of functionally graded beams using an exact plane elasticity approach,” J. Mech. Eng. Sci., 228, No. 14, 2488-2494 (2014). https://doi.org/10.1177/0954406213519974

    Article  Google Scholar 

  5. Y. Liu Y and D. W. Shu, “Free vibration analysis of exponential functionally graded beams with a single delamination,” Compos., Part B, 59, 166-172 (2014). https://doi.org/10.1016/j.compositesb.2013.10.026

  6. Z. Shi, X. Yao, F. Pang, and Q. Wang, “An exact solution for the free-vibration analysis of functionally graded carbonnanotube-reinforced composite beams with arbitrary boundary conditions,” Sci. Rep., 7, No.1, 12909 (2017). https://doi.org/10.1038/s41598-017-12596-w

  7. L. Hadji and F. Bernard, “Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation,” Adv. Materials Res., 9, No. 1, 63-98 (2020). https://doi.org/10.12989/amr.2020.9.1.063

  8. H. H. S. AlSaid-Alwan and A. Mehmet, “Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study,” Comput. Concrete, 26, No. 3, 285-292 (2020). https://doi.org/10.12989/cac.2020.26.3.285

  9. V. Kumar, S. J. Singh, V. H. Saran, and S. P. Harsha, “Exact solution for free vibration analysis of linearly varying thickness FGM plate using Galerkin-Vlasov’s method,” J. Mater., 235, No. 4, 880-897 (2021). https://doi.org/10.1177/1464420720980491

    Article  Google Scholar 

  10. T. G. Nguyen, “Free Vibration exploration of rotating FGM porosity beams under axial load considering the initial geometrical imperfection,” Math. Probl. Eng., 2021, 1-16 (2021). https://doi.org/10.1155/2021/5519946

    Article  Google Scholar 

  11. S. C. Han, G. R. Romboy, and K. D. Kim, “Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element,” Int. J. Struct. Stab. Dy., 8, No. 2, 203-229 (2008). https://doi.org/10.1142/S0219455408002624

    Article  Google Scholar 

  12. F. Q. Zhao, Z. M. Wang, and R. P. Zhang, “Post-buckling analysis of FGM beam subjected to non-conservative forces and in-plane thermal loading,” Appl. Mech. Mater., 152/154, 474-479 (2012). https://doi.org/10.4028/www.scientific.net/AMM.152-154.474

    Article  Google Scholar 

  13. M. Raki, R. Alipour, and A. Kamanbedast, “Thermal buckling of thin rectangular FGM plate,” World Applied Sciences Journal, 16, No. 1, 52-62 (2012).

    Google Scholar 

  14. F. Farhatnia, M. A. Bagheri, and A. Ghobadi, “Buckling analysis of FGM thick beam under different boundary conditions using GDQM,” Adv. Mat. Res., 433-440, 4920-4924 (2012). https://doi.org/10.4028/www.scientific.net/AMR.433-440.4920

    Article  Google Scholar 

  15. T. H. Trinh, D. K. Nguyen, B. S. Gan, and A. Alexandrov, “Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation,” Struc. Eng. Mech., 58, No. 3, 515-532 (2016). https://doi.org/10.12989/sem.2016.58.3.515

  16. E. Y. Ali and Y. S. Bayleyegn, “Analytical and numerical buckling analysis of rectangular functionally-graded plates under uniaxial compression,” In: Proceedings of the Structural Stability Research Council Annual Stability Conference, St. Louis, MO, USA, (2019).

  17. H. N. Nguyen, T. C. Tan, D. T. Luat, V. D. Phan, D. V. Thom, and P. V. Minh, “Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory,” Materials, 12, No. 8, 1262 (2019). https://doi.org/10.3390/ma12081262

    Article  CAS  Google Scholar 

  18. M. Zaczynska, and F. Kazmierczyk, “Multi-mode buckling analysis of FGM channel section beams,” Mater., 13, No. 11, 2567 (2020). https://doi.org/10.3390/ma13112567

  19. M. Fabiani, “Exact solutions of linear buckling for a class of FGM columns with varying cross-section,” Int. J. Struct. Stab. Dy., 21, No. 6, 2150079 (2021). https://doi.org/10.1142/S0219455421500796

  20. A. K. Eqal, “Static buckling behavior of FGM Timoshenko beam theory resting on Winkler elastic foundation,” Journal of Mechanical Engineering Research and Developments JERDFO, 44, No. 4, 168-177 (2021).

    Google Scholar 

  21. J. K. Lee, and B. K. Lee, “In-plane free vibration of uniform circular arches made of axially functionally graded materials,” Int. J. Struct. Stab. Dy., 19, No. 7, 1950084 (2019). https://doi.org/10.1142/S0219455419500846

  22. J. K. Lee, and B. K. Lee, “Coupled flexural-torsional free vibration of an axially functionally graded circular curved beam,” Mech. Compos. Mater., 57, No. 6, 833-846 (2022). https://doi.org/10.1007/s11029-022-10003-8

    Article  Google Scholar 

  23. M. Soltani, and B. Asgarian, “Finite element formulation for linear stability analysis of axially functionally graded nonprismatic Timoshenko Beam,” Int. J. Struct. Stab. Dy., 19, No. 2, 1950002 (2019). https://doi.org/10.1142/S0219455419500020

  24. M. Alimoradzadeh, M. Salehi, and S. M. Esfarjani, “Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load,” Nonlinear. Eng., 8, 250-260 (2018). https://doi.org/10.1515/nleng-2018-0051

    Article  Google Scholar 

  25. E. S. Khoram-Nejad, S. Moradi, and M. Shishehsaz, “Free vibration analysis of the cracked post-buckled axially functionally graded beam under compressive load,” J. Comput. Appl. Mech., 52, No. 2, 256-270 (2021). https://doi.org/10.22059/jcamech.2021.320044.602

  26. R. Bjorhovde, “The strength of heavy columns,” J. Constr. Steel Res., 19, 313-320 (1991). https://doi.org/10.1016/0143-974X(91)90021-R

    Article  Google Scholar 

  27. T. M. Atanackovic, and V. B. Glavardanov, “Optimal shape of a heavy compressed column,” Struct. Multidisc. Optim., 28, 388-396 (2004). https://doi.org/10.1007/s00158-004-0457-1

    Article  Google Scholar 

  28. L. N. Virgin, S. T. Santillan, and D. G. Holland, “Effect of gravity on the vibration of vertical cantilevers,” Mech. Res. Commun., 34, 312-317 (2007). https://doi.org/10.1016/j.mechrescom.2006.12.006

    Article  Google Scholar 

  29. F. Okay, M. T. Atay, and S. B. Coskun, “Determination of buckling loads and mode shapes of a heavy vertical column under its own weight using the variational iteration method,” Int. J. Nonlin. Sci. Num., 11, 851-857 (2010). https://doi.org/10.1515/IJNSNS.2010.11.10.851

    Article  Google Scholar 

  30. J. K. Lee, and B. K. Lee, “Free vibration and buckling of heavy column with regular polygon cross-section,” J. Mech. Eng. Sci., 236, Iss. 5, 2510-2521 (2022) https://doi.org/10.1177/09544062211029321

  31. Y. A. Kang, and X. F. Li, “Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force,” Int. J. Nonlin. Mech., 44, 696-703 (2009). 10.1016%2Fj.ijnonlinmec.2009.02.016

  32. M. Sitar, F. Kosel, and M. Brojan, “Large deflections of nonlinearly elastic functionally graded composite beam,” Arch. Civ. Mech. Eng., 14, No. 4, 700-709 (2014). https://doi.org/10.1016/j.acme.2013.11.007

    Article  Google Scholar 

  33. J. M. Gere and S. P. Timoshenko, Mechanics of Materials, PWS Publishing Company, Boston, USA (1997).

    Google Scholar 

  34. A. K. Chopra, Dynamics of Structures, Upper Saddle River, Prentice-Hall, Inc., N. Y, USA (2001).

  35. R. L. Burden, D. J. Faires, and A. M. Burden, Numerical Analysis, Cengage Learning, Boston, USA (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Lee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.K., Lee, J.K. Stability Analysis of Axially Functionally Graded Heavy Column. Mech Compos Mater 60, 335–352 (2024). https://doi.org/10.1007/s11029-024-10190-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-024-10190-6

Keywords

Navigation