Skip to main content
Log in

A Layerwise Higher-Order Approach for the Free-Edge Effect in Angle-Ply Laminates

  • Published:
Mechanics of Composite Materials Aims and scope

The free edges of layered structures require special attention in design processes. Due to the discontinuous material properties, singular stress concentrations occur where the layer interfaces meet the free edge. These bi-material points have to be closely examined as possible starting points for delamination processes. In the present study, we propose an efficient approximate closed-form method to analyze the interlaminar shear stresses in symmetric angle-ply laminates under uniform axial extension and homogeneous thermal loading. The method bases on a higher-order layerwise displacement approach. The resulting displacement and stress distributions of a first-order and a third-order analysis are compared and validated against numerical reference data gained by a self-developed finite element formulation. Especially, the results of the third-order analysis show a good agreement to the reference data along the interface, even if the singular behavior of the stresses in the very close vicinity of the free-edge cannot be reproduced exactly. A comparison of the displacement and stress distributions in thickness direction shows the benefit of the third-order over the first-order approach. In addition, the influence of the ply angle on the results is reproduced by both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. T. Hayashi, “Analytical study of interlaminar shear stresses in laminated composite plate,” Transactions of the Japan Society of Aeronautical Engineering and Space Science, 10, 43-48 (1967).

    Google Scholar 

  2. S. Dölling, “Eine Erweiterung der Skalierte-Rand-Finite-Elemente-Methode zur Analyse und Bewertung des Randeffekts in ebenen Laminaten mithilfe der Finiten Bruchmechanik,” „“PhD thesis, Technische Universität Darmstadt (2022).

  3. C. Mittelstedt und W. Becker, “Free-edge effects in composite laminates,” Appl. Mech. Reviews, 60, No. 5, 217-245 (2007).

    Article  Google Scholar 

  4. C. Mittelstedt, W. Becker, A. Kappel, and N. Kharghani, “Free edge effects in composite laminates - A review of recent developments 2005-2020,” Appl. Mech. Reviews, 74, No. 1 (2022).

  5. C. Mittelstedt und W. Becker, “Interlaminar stress concentrations in layered structures: Part I-a selective literature survey on the free-edge effect since 1967,” J. Compos. Mater., 38, No. 12, 1037-1062 (2004).

    Article  Google Scholar 

  6. T. Kant and K. Swaminathan, “Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments,” Compos. Struct., 49, No. 1, 65-75 (2000).

    Article  Google Scholar 

  7. J. N. Reddy and D. H. Robbins Jr, “Theories and computational models for composite laminates,” Appl. Mech. Reviews, 47, 147-169 (1994).

    Article  Google Scholar 

  8. C. T. Herakovich, “Free edge effects in laminated composites,” Failure in Composites, 4, 205-219 (1989).

    Google Scholar 

  9. N. J. Pagano, Interlaminar Response of Composite Materials, Elsevier, Amsterdam, New York (1989).

    Google Scholar 

  10. N. J. Pagano and S. R. Soni, “Models for studying free-edge effects,” Compos. Mater. Series, 5, 1-68 (1989).

    Article  Google Scholar 

  11. S. R. Soni and N. J. Pagano, “Elastic response of composite laminates,” in: Z. Hashin and C. T. Herakovich, Mechanics of Composite Materials, 227-242, Pergamon, New York (1983).

  12. N. J. Salamon, “An assessment of the interlaminar stress problem in laminated composites,” J. Compos. Mater., 14, No. 1, 177-194 (1980).

    Article  Google Scholar 

  13. A. H. Puppo and H. A. Evensen, “Interlaminar shear in laminated composites under generalized plane stress,” J. Compos. Mater., 4, No. 2, 204-220 (1970).

    Article  Google Scholar 

  14. N. J. Pagano and R. B. Pipes, “The influence of stacking sequence on laminate strength,” J. Compos. Mater., 5, No. 1, 50-57 (1971).

    Article  Google Scholar 

  15. N. J. Pagano and R. B. Pipes, “Some observations on the interlaminar strength of composite laminates,” Int. J. Mech. Sci., 15, No. 8, 679-688 (1973).

    Article  Google Scholar 

  16. A. Harris and O. Orringer, “Investigation of angle-ply delamination specimen for interlaminar strength test,” J. Compos. Mater., 12, No. 3, 285-299 (1978).

    Article  Google Scholar 

  17. P. Conti, P. and A. De Paulis, “A simple model to simulate the interlaminar stresses generated near the free edge of a composite laminate,” in: W. S. Johnson, Delamination and Debonding of Materials, 35-51, American Society for Testing and Materials, Philadelphia (1985).

  18. N. J. Pagano, “On the calculation of interlaminar normal stress in composite laminate,” J. Compos. Mater., 8, No. 1, 65-81 (1974).

    Article  Google Scholar 

  19. W. Becker, “Closed-form analysis of the free edge effect in angle-ply laminates,” J. Appl. Mech., 61, 209-211 (1994).

    Article  Google Scholar 

  20. W. Becker, “Closed-form solution for the free-edge effect in cross-ply laminates,” Compos. Struct., 26, No. 1-2, 39-45 (1993).

    Article  Google Scholar 

  21. W. Becker, “Free-edge stress concentration in angle-ply laminates,” Archive of Appl. Mech., 65, No. 1, 38-43 (1994).

    Article  Google Scholar 

  22. W. Becker and G. Kress, “Stiffness reduction in laminate coupons due to the free-edge effect,” Compos. Sci. and Technol., 52, No. 1, 109-115 (1994).

    Article  Google Scholar 

  23. R. B. Pipes and N. J. Pagano, “Interlaminar stresses in composite laminates—an approximate elasticity solution,” J. Appl. Mech., 41, No. 3, 668-672 (1974).

    Article  Google Scholar 

  24. G. Kress and W. Becker, “Effective tensile stiffness of finite-width quasi-isotropic laminates,” J. Reinf. Plastics and Compos., 14, 1043-1053 (1995).

    Article  CAS  Google Scholar 

  25. C. Zhu and Y. C. Lam, “A Rayleigh-Ritz solution for local stresses in composite laminates,” Compos. Sci. Technol., 58, No. 3-4, 447-461 (1998).

    Article  Google Scholar 

  26. M. Tahani and A. Nosier, “Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading,” Compos. Struct., 60, No. 1, 91-103 (2003).

    Article  Google Scholar 

  27. C. Mittelstedt and W. Becker, “Fast and reliable analysis of free-edge stress fields in a thermally loaded composite strip by a layerwise laminate theory,” Int. J. Numerical Methods in Eng., 67, No. 6, 747-770 (2006).

    Article  Google Scholar 

  28. C. Mittelstedt and W. Becker, “The Pipes–Pagano-problem revisited: elastic fields in boundary layers of plane laminated specimens under combined thermomechanical load,” Compos. Struct., 80, No. 3, 373-395 (2007).

    Article  Google Scholar 

  29. C. Mittelstedt and W. Becker, “Reddy’s layerwise laminate plate theory for the computation of elastic fields in the vicinity of straight free laminate edges,” Mater. Sci. and Eng., 498, No. 1-2, 76-80 (2008).

    Article  Google Scholar 

  30. G. Flanagan, “An efficient stress function approximation for the free edge stresses in laminates,” Int. J. of Solids and Struct., 31, No. 7, 941-952 (1994).

    Article  Google Scholar 

  31. C. Kassapoglou and P. A. Lagace, “An efficient method for the calculation of interlaminar stresses in composite materials,” J. Appl. Mech., 53, 744-750 (1986).

    Article  Google Scholar 

  32. C. Kassapoglou and P. A. Lagace, “Closed form solutions for the interlaminar stress field in angle-ply and cross-ply laminates,” J. Compos. Mater., 21, No. 4, 292-308 (1987).

    Article  CAS  Google Scholar 

  33. C. Kassapoglou, “The effect of combined loading and stacking sequence on the interlaminar stress field at free edges of composite laminates,” 30th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference: A Collection of Technical Papers, 4, 2089-2097 (1989).

    Google Scholar 

  34. S. K. Morton and J. P. H. Webber, “Interlaminar failure due to mechanical and thermal stresses at the free edges of laminated,” Compos. Sci. and Technol., 47, 1-13 (1993).

    Article  Google Scholar 

  35. C. A. Rose and C. T. Herakovich, “An approximate solution for interlaminar stresses in composite laminates,” Compos. Eng., 3, No. 3, 271-285 (1993).

    Article  Google Scholar 

  36. C. C. Lin, C. Y. Hsu, and C. C. Ko, “Interlaminar stresses in general laminates with straight free edges,” AIAA J., 33, No. 8, 1471-1476 (1995).

    Article  Google Scholar 

  37. S. Tang, “A boundary layer theory — Part I: Laminated composites in plane stress,” J. Compos. Mater., 9, 33-41 (1975).

    Article  Google Scholar 

  38. S. Tang and A. Levy, “A boundary layer theory — Part II: Extension of laminated finite strip,” J. Compos. Mater., 9, No. 1, 42-52 (1975).

    Article  Google Scholar 

  39. P. Bar-Yoseph and T. H. Pian, “Calculation of interlaminar stress concentration in composite laminates,” J. Compos. Mater., 15, No. 3, 225-239 (1981).

    Article  Google Scholar 

  40. P. Bar-Yoseph, “On the accuracy of interlaminar stress calculation in laminated plates,” Computer Methods in Appl. Mech. and Eng., 36, 309-329 (1983).

    Google Scholar 

  41. N. J. Pagano, “Stress fields in composite laminates,” Int. J. of Solids and Struct., 14, No. 5, 385-400 (1978).

    Article  Google Scholar 

  42. N. J. Pagano, “Free edge stress fields in composite materials,” Int. J. Solids and Struct., 14, 401-406 (1978).

    Article  Google Scholar 

  43. N. J. Pagano and S. R. Soni, “Global-local laminate variational model,” Int. J. Non-linear Mech., 14, 207-228 (1983).

    Google Scholar 

  44. P. N. Harrison and E. R. Johnson, “A mixed variational formulation for interlaminar stresses in thickness-tapered composite laminates,” Int. J. of Solids and Struct., 33, No. 16, 2377-2399 (1996).

    Article  Google Scholar 

  45. E. R. Johnson and B. L. Kemp, “Modeling the stress field in laminated composite plates near discontinuities,” Compos. Struct., 3, No. 2, 145-166 (1985).

    Article  Google Scholar 

  46. A. Diaz Diaz, J. F. Caron, and R. P. Carreira, “Software application for evaluating interfacial stresses in inelastic symmetrical laminates with free edges,” Compos. Struct., 58, No. 2, 195-208 (2002).

  47. N. J. Pagano, G. A. Schoeppner, R. Kim, and F. L. Abrams, “Steady-state cracking and edge effects in thermo-mechanical transverse cracking of cross-ply laminates,” Compos. Sci. and Technol., 58, No. 11, 1811-1825 (1998).

    Article  CAS  Google Scholar 

  48. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco (1963).

    Google Scholar 

  49. C. Hwu, Anisotropic Elastic Plates, Springer, New York (2010).

    Book  Google Scholar 

  50. T. Lorriot, G. Marion, R. Harry, and H. Wargnier, “Onset of free-edge delamination in composite laminates under tensile loading,” Compos., Part B, 34, No. 5, 459-471 (2003).

    Article  Google Scholar 

  51. E. Martin, D. Leguillon, and N. Carrère, “A twofold strength and toughness criterion for the onset of free-edge shear delamination in angle-ply laminates,” Int. J. of Solids and Struct., 47, No. 9, 1297-1305 (2010).

    Article  Google Scholar 

  52. N. Schneider, “Entwicklung eines Finiten Elementes für den Laminatrandeffekt,” Master thesis, TU Darmstadt (2019).

  53. S. S. Wang and I. Choi, “Boundary-layer effects in composite laminates: Part 1: Free-edge stress singularities,” J. Appl. Mech., 49, No. 3, 541-58 (1982).

    Article  Google Scholar 

  54. S. S. Wang and I. Choi, “Boundary-layer effects in composite laminates: Part 2 — Free-edge stress solutions and basic characteristics,” J. Appl. Mech., 49, No. 3, 549-560 (1982).

    Article  Google Scholar 

  55. S. Dölling, J. Hahn, J. Felger, S. Bremm, and W. Becker, “A scaled boundary finite element method model for interlaminar failure in composite laminates,” Compos. Struct., 241, 111865 (2020).

    Article  Google Scholar 

  56. C. Frey, S. Dölling, M. Leštáková, and W. Becker, “Free-edge crack onset induced by thermal loading,” Int. J. of Solids and Struct., 230-231, 111160 (2021).

    Article  Google Scholar 

  57. A. D. Diaz and J. F. Caron, “Prediction of the onset of mode III delamination in carbon-epoxy laminates,” Compos. Struct., 72, No. 4, 438-445 (2006).

    Article  Google Scholar 

  58. C. T. Herakovich, “On the relationship between engineering properties and delamination of composite materials,” J. Compos. Mater., 15, No. 4, 336-348 (1981).

    Article  CAS  Google Scholar 

  59. C. Frey, S. Dölling, and W. Becker, “Closed-form analysis of interlaminar crack initiation in angle-ply laminates,” Compos. Struct., 257, 113060 (2020).

    Article  Google Scholar 

  60. C. Frey, S. Dölling, and W. Becker, “Free-edge delamination in composite laminates under tensile loading: An analytical closed-form approach,” PAMM: Proc. in Appl. Math. and Mech., 20, No. 1 (2021).

  61. C. Frey, S. Dölling, and W. Becker, “A general sandwich-type model for delamination failure in angle-ply laminates under thermo-mechanical loading,” PAMM: Proc. in Appl. Math. and Mech., 21, No. 1 (2021).

  62. T. Hughes, The Finite Element Method: Linear Static and Dynamic Analysis, Prentice-Hall, New Jersey (1987).

    Google Scholar 

  63. M. Hahn and M. Reck, Kompaktkurs Finite Elemente für Einsteiger, Springer, Wiesbaden (2018).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Frey.

Appendices

Appendix A. Boundary conditions of the proposed models at the free edge y = 0 and at the symmetry plane y = b.

For FSDT model:

y = 0

y = b

 

\({N}_{xy}^{\left(1\right)}+\frac{2}{t}{M}_{xy}^{\left(2\right)}=0\)

\({\widehat{u}}_{x}^{\left(1\right)}=0\)

 

\({N}_{xy}^{\left(2\right)}-\frac{2}{t}{M}_{xy}^{\left(2\right)}=0\)

\({\widehat{u}}_{x}^{\left(2\right)}=0\)

 

\({N}_{yy}^{\left(1\right)}+\frac{2}{t}{M}_{yy}^{\left(2\right)}=0\)

\({\widehat{u}}_{y}^{\left(1\right)}=0\)

 

\({N}_{yy}^{\left(2\right)}-\frac{2}{t}{M}_{yy}^{\left(2\right)}=0\)

\({\widehat{u}}_{y}^{\left(2\right)}=0\)

 

\({M}_{xy}^{\left(1\right)}-{M}_{xy}^{\left(2\right)}=0\)

\({\psi }_{x}^{\left(1\right)}=0\)

 

\({M}_{yy}^{\left(1\right)}-{M}_{yy}^{\left(2\right)}=0\)

\({\psi }_{y}^{\left(1\right)}=0\)

For TSDT model:

y = 0

y = b

 

\({N}_{xy}^{\left(1\right)}-{3c}_{2}\left({O}_{xy}^{\left(1\right)}-{O}_{xy}^{\left(2\right)}\right)+{6c}_{3}\left({P}_{xy}^{\left(1\right)}+{P}_{xy}^{\left(2\right)}\right)=0\)

\({\widehat{u}}_{x}^{\left(1\right)}=0\)

 

\({N}_{xy}^{\left(2\right)}+{3c}_{2}\left({O}_{xy}^{\left(1\right)}-{O}_{xy}^{\left(2\right)}\right)-{6c}_{3}\left({P}_{xy}^{\left(1\right)}+{P}_{xy}^{\left(2\right)}\right)=0\)

\({\widehat{u}}_{x}^{\left(2\right)}=0\)

 

\({N}_{yy}^{\left(1\right)}-{3c}_{2}\left({O}_{yy}^{\left(1\right)}-{O}_{yy}^{\left(2\right)}\right)+{6c}_{3}\left({P}_{yy}^{\left(1\right)}+{P}_{yy}^{\left(2\right)}\right)=0\)

\({\widehat{u}}_{y}^{\left(1\right)}=0\)

 

\({N}_{yy}^{\left(1\right)}+{3c}_{2}\left({O}_{yy}^{\left(1\right)}-{O}_{yy}^{\left(2\right)}\right)-{6c}_{3}\left({P}_{yy}^{\left(1\right)}+{P}_{yy}^{\left(2\right)}\right)=0\)

\({\widehat{u}}_{y}^{\left(2\right)}=0\)

 

\({M}_{xy}^{\left(1\right)}+{c}_{2}t\left({O}_{xy}^{\left(1\right)}-{O}_{xy}^{\left(2\right)}\right)-{c}_{3}t\left(7{P}_{xy}^{\left(1\right)}+2{P}_{xy}^{\left(2\right)}\right)=0\)

\({\psi }_{x}^{\left(1\right)}=0\)

 

\({M}_{xy}^{\left(2\right)}+{c}_{2}t\left({O}_{xy}^{\left(1\right)}-{O}_{xy}^{\left(2\right)}\right)-{c}_{3}t\left(2{P}_{xy}^{\left(1\right)}+7{P}_{xy}^{\left(2\right)}\right)=0\)

\({\psi }_{y}^{\left(2\right)}=0\)

 

\({M}_{yy}^{\left(1\right)}+{c}_{2}t\left({O}_{yy}^{\left(1\right)}-{O}_{yy}^{\left(2\right)}\right)-{c}_{3}t\left(7{P}_{yy}^{\left(1\right)}+2{P}_{yy}^{\left(2\right)}\right)=0\)

\({\psi }_{y}^{\left(1\right)}=0\)

 

\({M}_{yy}^{\left(2\right)}+{c}_{2}t\left({O}_{yy}^{\left(1\right)}-{O}_{yy}^{\left(2\right)}\right)-{c}_{3}t\left(2{P}_{yy}^{\left(1\right)}+7{P}_{yy}^{\left(2\right)}\right)=0\)

\({\psi }_{y}^{\left(2\right)}=0\)

Appendix B. Finite Element Formulation

The matrix \(\overline{\mathbf{B} }\) contains the partial derivatives of the shape functions in an averaged sense. It is given by

$$\overline{\mathbf{B} }=\mathbf{B}-{\mathbf{B}}_{m}+{\overline{\mathbf{B}} }_{m},$$
(A1)

where B, Bm and \({\overline{\mathbf{B}} }_{m}\) are given as

$$\begin{array}{r}\mathbf{B}=\left[\begin{array}{cccccccccccc}\frac{\partial {N}_{1}}{\partial x}& 0& 0& \frac{\partial {N}_{2}}{\partial x}& 0& 0& \frac{\partial {N}_{3}}{\partial x}& 0& 0& \frac{\partial {N}_{4}}{\partial x}& 0& 0\\ 0& \frac{\partial {N}_{1}}{\partial y}& 0& 0& \frac{\partial {N}_{2}}{\partial y}& 0& 0& \frac{\partial {N}_{3}}{\partial y}& 0& 0& \frac{\partial {N}_{4}}{\partial y}& 0\\ 0& 0& \frac{\partial {N}_{1}}{\partial z}& 0& 0& \frac{\partial {N}_{2}}{\partial z}& 0& 0& \frac{\partial {N}_{3}}{\partial z}& 0& 0& \frac{\partial {N}_{4}}{\partial z}\\ 0& \frac{\partial {N}_{1}}{\partial z}& \frac{\partial {N}_{1}}{\partial y}& 0& \frac{\partial {N}_{2}}{\partial z}& \frac{\partial {N}_{2}}{\partial y}& 0& \frac{\partial {N}_{3}}{\partial z}& \frac{\partial {N}_{3}}{\partial y}& 0& \frac{\partial {N}_{4}}{\partial z}& \frac{\partial {N}_{4}}{\partial y}\\ \frac{\partial {N}_{1}}{\partial z}& 0& 0& \frac{\partial {N}_{2}}{\partial z}& 0& 0& \frac{\partial {N}_{3}}{\partial z}& 0& 0& \frac{\partial {N}_{4}}{\partial z}& 0& 0\\ \frac{\partial {N}_{1}}{\partial y}& 0& 0& \frac{\partial {N}_{2}}{\partial y}& 0& 0& \frac{\partial {N}_{3}}{\partial y}& 0& 0& \frac{\partial {N}_{4}}{\partial y}& 0& 0\end{array}\right],\\ {\mathbf{B}}_{{\varvec{m}}}=\frac{1}{3}\left[\begin{array}{cccccccccccc}\frac{\partial {N}_{1}}{\partial x}& \frac{\partial {N}_{1}}{\partial y}& \frac{\partial {N}_{1}}{\partial z}& \frac{\partial {N}_{2}}{\partial x}& \frac{\partial {N}_{2}}{\partial y}& \frac{\partial {N}_{2}}{\partial z}& \frac{\partial {N}_{3}}{\partial x}& \frac{\partial {N}_{3}}{\partial y}& \frac{\partial {N}_{3}}{\partial z}& \frac{\partial {N}_{4}}{\partial x}& \frac{\partial {N}_{4}}{\partial y}& \frac{\partial {N}_{4}}{\partial z}\\ \frac{\partial {N}_{1}}{\partial x}& \frac{\partial {N}_{1}}{\partial y}& \frac{\partial {N}_{1}}{\partial z}& \frac{\partial {N}_{2}}{\partial x}& \frac{\partial {N}_{2}}{\partial y}& \frac{\partial {N}_{2}}{\partial z}& \frac{\partial {N}_{3}}{\partial x}& \frac{\partial {N}_{3}}{\partial y}& \frac{\partial {N}_{3}}{\partial z}& \frac{\partial {N}_{4}}{\partial x}& \frac{\partial {N}_{4}}{\partial y}& \frac{\partial {N}_{4}}{\partial z}\\ \frac{\partial {N}_{1}}{\partial x}& \frac{\partial {N}_{1}}{\partial y}& \frac{\partial {N}_{1}}{\partial z}& \frac{\partial {N}_{2}}{\partial x}& \frac{\partial {N}_{2}}{\partial y}& \frac{\partial {N}_{2}}{\partial z}& \frac{\partial {N}_{3}}{\partial x}& \frac{\partial {N}_{3}}{\partial y}& \frac{\partial {N}_{3}}{\partial z}& \frac{\partial {N}_{4}}{\partial x}& \frac{\partial {N}_{4}}{\partial y}& \frac{\partial {N}_{4}}{\partial z}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\end{array}\right],\\ {\overline{\mathbf{B}} }_{{\varvec{m}}}=\frac{1}{3}\left[\begin{array}{cccccccccccc}\frac{\partial {\overline{N} }_{1}}{\partial x}& \frac{\partial {\overline{N} }_{1}}{\partial y}& \frac{\partial {\overline{N} }_{1}}{\partial z}& \frac{\partial {\overline{N} }_{2}}{\partial x}& \frac{\partial {\overline{N} }_{2}}{\partial y}& \frac{\partial {\overline{N} }_{2}}{\partial z}& \frac{\partial {\overline{N} }_{3}}{\partial x}& \frac{\partial {\overline{N} }_{3}}{\partial y}& \frac{\partial {\overline{N} }_{3}}{\partial z}& \frac{\partial {\overline{N} }_{4}}{\partial x}& \frac{\partial {\overline{N} }_{4}}{\partial y}& \frac{\partial {\overline{N} }_{4}}{\partial z}\\ \frac{\partial {\overline{N} }_{1}}{\partial x}& \frac{\partial {\overline{N} }_{1}}{\partial y}& \frac{\partial {\overline{N} }_{1}}{\partial z}& \frac{\partial {\overline{N} }_{2}}{\partial x}& \frac{\partial {\overline{N} }_{2}}{\partial y}& \frac{\partial {\overline{N} }_{2}}{\partial z}& \frac{\partial {\overline{N} }_{3}}{\partial x}& \frac{\partial {\overline{N} }_{3}}{\partial y}& \frac{\partial {\overline{N} }_{3}}{\partial z}& \frac{\partial {\overline{N} }_{4}}{\partial x}& \frac{\partial {\overline{N} }_{4}}{\partial y}& \frac{\partial {\overline{N} }_{4}}{\partial z}\\ \frac{\partial {\overline{N} }_{1}}{\partial x}& \frac{\partial {\overline{N} }_{1}}{\partial y}& \frac{\partial {\overline{N} }_{1}}{\partial z}& \frac{\partial {\overline{N} }_{2}}{\partial x}& \frac{\partial {\overline{N} }_{2}}{\partial y}& \frac{\partial {\overline{N} }_{2}}{\partial z}& \frac{\partial {\overline{N} }_{3}}{\partial x}& \frac{\partial {\overline{N} }_{3}}{\partial y}& \frac{\partial {\overline{N} }_{3}}{\partial z}& \frac{\partial {\overline{N} }_{4}}{\partial x}& \frac{\partial {\overline{N} }_{4}}{\partial y}& \frac{\partial {\overline{N} }_{4}}{\partial z}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\end{array}\right],\end{array}$$
(A2)

The volume-averaged partial derivatives of the shape function are defined as

$$\frac{\partial {\overline{N} }_{m}}{\partial {x}_{i}}=\frac{1}{V}\int v\frac{\partial {N}_{m}}{\partial {x}_{i}}dV.$$
(A3)

Using the matrix \(\overline{\mathbf{B} }\) instead of \(\overline{\mathbf{B} }\) prevents the element stiffness matrix from getting singular for nearly incompressible materials [62, 63]. Furthermore, the matrix B0 is given as

$${\mathbf{B}}_{0}={\left[\frac{\partial {N}_{5}}{\partial x}00000\right]}^{{\varvec{T}}}.$$
(A4)

Appendix C. Effective Stiffness

The constitutive law of a symmetric laminate under uniform axial strain ε0 in x -direction according to the CLPT is given by

$$\left[\begin{array}{c}{N}_{x}\\ 0\\ 0\end{array}\right]=\left[\begin{array}{ccc}{A}_{11}& {A}_{12}& {A}_{16}\\ {A}_{12}& {A}_{22}& {A}_{26}\\ {A}_{16}& {A}_{26}& {A}_{66}\end{array}\right]\left[\begin{array}{c}{\varepsilon }_{0}\\ {\varepsilon }_{y}^{0}\\ {\gamma }_{xy}^{0}\end{array}\right].$$
(A5)

Consequently, this results in

$${N}_{x}=\frac{1}{{\left({\mathbf{A}}^{-1}\right)}_{11}}{\varepsilon }_{0},$$
(A6)

which implicates the definition of the effective longitudinal stiffness for symmetric laminates:

$${E}_{\mathrm{xx}}=\frac{1}{{\left({\mathbf{A}}^{-1}\right)}_{11}d}.$$
(A7)

Herein, d is the total laminate thickness and A-1 the inverse of the extensional stiffness matrix of the laminate. For the general case of arbitrary layups with bending extension coupling, (ABD)-1 must be used instead of A-1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, C., Hahn, J., Schneider, N. et al. A Layerwise Higher-Order Approach for the Free-Edge Effect in Angle-Ply Laminates. Mech Compos Mater 59, 299–318 (2023). https://doi.org/10.1007/s11029-023-10097-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10097-8

Keywords

Navigation