Skip to main content
Log in

Micro-Crack Bridging Effects on the Tensile and Compressive Strengths of CNT-Epoxy Composites

  • Published:
Mechanics of Composite Materials Aims and scope

Micro-crack bridging and an optimal regime for dispersion of carbon nanotubes (CNTs) in the E-glass fabric reinforced polymer (GFRP) matrix are considered. The purpose of CNT dispersion in the glass fabric is to achieve the enhanced mechanical and tunable thermal/dielectric properties. The requirement for such conducting composites compared to high-cost carbon fabric is well recognized. The results are validated with the help of a theoretical model. The model relates the stiffness degradation of the composites and the existence of matrix cracks in the composites. Finite element simulation of a representative volume element of a laminate shows the effect of CNTs on the micro-cracks and the effective stiffness. The results obtained from the theoretical and finite element simulations are correlated to the experimental data and explain the increased strength due to the addition of CNT. This study shows that certain processing conditions in combination with the effect of dispersant agents reduce the porosity, residual stress and present a consistent dispersion strengthening effect with as low as 0.1 wt% CNT addition, resulting in improved tensile and compressive properties. The treatment of CNTs with ethanol reduces the Van der Waals forces among CNTs and the epoxy matrix viscosity. Enhancement in the CNT-GFRP stiffness and strength appears primarily due to effective micro-crack bridging and changes in the load transfer path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett., 87, 215502 (2001).

    Article  CAS  Google Scholar 

  2. E. T. Thostenson and T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modeling and characterization,” J. Phys. D. Appl. Phys., 36, No. 5, 573–582 (2003).

    Article  CAS  Google Scholar 

  3. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, 287, No. 5453, 637-640 (2000).

    Article  CAS  Google Scholar 

  4. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single-wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., 84, No. 24, 5552-5555 (2000).

    Article  CAS  Google Scholar 

  5. S. E. Lee, S. Cho, and Y. S. Lee, “Mechanical and thermal properties of MWCNT-reinforced epoxy nano-composites by vacuum-assisted resin transfer molding,” Carbon Lett., 15, No. 1, 32-37 (2014).

    Article  Google Scholar 

  6. K. B. Kancherla, D. B. Subbappa, S. R. Hiremath, B. Raju, and D. R. Mahapatra, “Enhancing mechanical properties of glass fabric composite with surfactant treated zirconia nanoparticles,” Compos. Part A Appl. Sci. Manuf., 118, 131-141 (2019).

    Article  CAS  Google Scholar 

  7. Y. Zhou, P. X. Wu, Z. Y. Cheng, J. Ingram, and S. Jeelani, “Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube,” Express Polym. Lett., 2, No. 1, 40-48 (2008).

    Article  CAS  Google Scholar 

  8. P. Subba Rao, K. Renji, M. R. Bhat, D. R. Mahapatra, and G. N. Naik, “Mechanical properties of CNT-Bisphenol e cyanate ester-based CFRP nano-composite developed through VARTM process,” J. Reinf. Plast. Compos., 34, No. 12, 1000-1014 (2015).

    Article  Google Scholar 

  9. S. Amir Ahmadi, A. R. Ghasemi, and M. Mohammadi, “Evaluation of thermal residual stresses of thin-walled laminated composite pipes to characterize the effects of mandrel materials and addition MWCNTs,” Mech. Mater., 136, 103083 (2019).

    Article  Google Scholar 

  10. K. Bilisik, N. S. Karaduman, and E. Sapanci, “Tensile properties of nanoprepreg/nanostitched 3D carbon/epoxy MWCNTs composites”, Mech. Mater., 128, 11-23 (2019).

    Article  Google Scholar 

  11. I. A. Kazakov, A. N. Krasnovskii, and P. S. Kishuk, “The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites,” Mech. Mater., 134, 54-60 (2019).

    Article  Google Scholar 

  12. A. N. Krasnovskii, I. A. Kazakov, and P. S. Kishchuk, “Mechanical properties of glass fiber reinforced plastics modified with carbon nanotubes,” Glass Ceram., 76, 167-170 (2019).

    Article  CAS  Google Scholar 

  13. M. J. Mahmoodi, Y. Rajabi, and B. Khodaiepour, “Electro-thermo-mechanical responses of laminated smart nanocomposite moderately thick plates containing carbon nanotube-A multi-scale modeling,” Mech. Mater., 141, No. 7, 103247 (2020).

    Article  Google Scholar 

  14. A. F. M. Nor, M. T. H. Sultan, A. U. M. Shah, A. M. R. Azmi, and K. I. Ismail, “Carbon nanotubes (CNTs) as nanofillers in bamboo/glass hybrid composites and their effect on tensile, flexural and impact properties,” AIP Conference Proceedings, 2030, 020171 (2018).

    Article  Google Scholar 

  15. M. Sarafrazi, M. Hamadanian, and A. R. Ghasemi, “Optimize epoxy matrix with RSM/CCD method and influence of multi-wall carbon nanotube on mechanical properties of epoxy/polyurethane,” Mech. Mater., 138, 103154 (2019).

    Article  Google Scholar 

  16. H. Wang, L. Yang, H. Guo, Y. Zhao, and J. Zhao, “Mechanical and thermodynamic properties of unidirectional flax fiber reinforced cnt modified epoxy composites,” Fibers Polym., 20, 1266-1276 (2019).

    Article  CAS  Google Scholar 

  17. A. Haghbin, G. Liaghat, H. Hadavinia, A. M. Arabi, and M. H. Pol, “Enhancement of the electrical conductivity and interlaminar shear strength of CNT/GFRP hierarchical composite using an electrophoretic deposition technique,” Mater., 10, No. 10, 1120 (2017).

    Article  Google Scholar 

  18. N. Li, G. dong Wang, S. K. Melly, T. Peng, Y. C. Li, Q. D. Zhao, and S. de Ji, “Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer,” Compos. Struct., 208, No. 36, 13-22 (2019).

  19. P. S. Shin, D. J. Kwon, J. H. Kim, S. I. Lee, K. L. DeVries, and J. M. Park, “Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on GFRP composites,” Compos. Sci. Technol., 142, 98-106 (2017).

    Article  CAS  Google Scholar 

  20. J. B. Bai and A. Allaoui, “Effect of the length and the aggregate size of MWNTs on the improved efficiency of the mechanical and electrical properties of nanocomposites-Experimental investigation,” Compos. Part A Appl. Sci. Manuf., 34, No. 8, 689-694 (2003).

    Article  Google Scholar 

  21. J. H. Du, J. Bai and H. M. Cheng, “The present status and key problems of carbon nanotube-based polymer composites,” Express Polym. Lett., 1, No. 5, 253-273 (2007).

    Article  CAS  Google Scholar 

  22. P. C. Ma, S. Y. Mo, B. Z. Tang, and J. K. Kim, “Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites,” Carbon, 48, No. 6, 1824-1834 (2010).

    Article  CAS  Google Scholar 

  23. A. H. Esbati and S. Irani, “Effect of functionalized process and CNTs aggregation on fracture mechanism and mechanical properties of polymer nano-composite,” Mech. Mater., 118, 106-119 (2018).

    Article  Google Scholar 

  24. F. L. Jin and S. J. Park, “Recent advances in carbon-nanotube-based epoxy composites,” Carbon Lett., 14, No. 1, 1-13 (2013).

    Article  Google Scholar 

  25. Y. Pan, G. J. Weng, S. A. Meguid, W. S. Bao, Z. H. Zhu, and A. M. S. Hamouda, “Interface effects on the viscoelastic characteristics of carbon nanotube-polymer matrix composites,” Mech. Mater., 58, 1-11 (2013).

    Article  Google Scholar 

  26. K. Yang, M. Gu, Y. Guo, X. Pan, and G. Mu, “Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites,” Carbon, 47, No. 7, 1723-1737 (2009).

    Article  CAS  Google Scholar 

  27. C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, “Recent studies on buckling of carbon nanotubes,” Appl. Mech. Rev., 63, No. 3, 030804 (2010).

    Article  Google Scholar 

  28. B. Raju, S. R. Hiremath, and D. R. Mahapatra, “A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites,” Compos. Struct., 204, 607-619 (2018).

    Article  Google Scholar 

  29. A. R. Ghasemi, M. M. Mohammadi, and M. Mohandes, “The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses,” Compos. B. Eng., 77, 519-527 (2015).

    Article  CAS  Google Scholar 

  30. A. R. Ghasemi and M. M. Fesharaki, “Effect of carbon nanotube on the cured shape of cross-ply polymer matrix nanocomposite laminates: analytical and experimental study,” Iran. Polym. J., 27, No. 12, 965-977 (2018).

    Article  CAS  Google Scholar 

  31. A. R. Ghasemi, M. M. Fesharaki, and M. Mohandes, “Three-phase micromechanical analysis of residual stresses in reinforced fiber by carbon nanotubes,” J. Compos. Mater., 51, No.12, 1783-1794 (2017).

    Article  CAS  Google Scholar 

  32. O. V. Kharissova, B. I. Kharisov, and E. G. de C. Ortiz, “Dispersion of carbon nanotubes in water and non-aqueous solvents,” RSC Adv., 3, 24812-24852 (2013).

  33. H. M. Tajammul, P. S. S. Gouda, I. G. Siddhalingeshwar and K. G. Kodancha, “Effect of alcoholic treated MWCNT on tensile behavior of epoxy composite,” Int. J. Eng. Sci. Technol., 8, No. 1, 57-63 (2016).

    Article  Google Scholar 

  34. N. Laws and G. J. Dvorak, “Progressive transverse cracking in composite laminates,” J. Compos. Mater., 22, No. 10, 900-916 (1988).

    Article  Google Scholar 

  35. A. S. D. Wang, “Fracture mechanics of sub laminate cracks in composite laminates,” Compos. Technol. Rev., 6, 45-62 (1984).

    Article  Google Scholar 

Download references

Acknowledgment

Authors thankfully acknowledge funding support under the ACECOST Phase-III program of Aeronautics Research & Development Board (AR&DB), DRDO, India, to carry out this research at the ACECOST Centre at Department of Aerospace Engineering, IISc. We also thank MNCF CeNSE, IISc for the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Mahapatra.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 58, No. 4, pp. 835-856, July-August, 2022. Russian DOI: https://doi.org/10.22364/mkm.58.4.10.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Hiremath, S.R. & Mahapatra, D.R. Micro-Crack Bridging Effects on the Tensile and Compressive Strengths of CNT-Epoxy Composites. Mech Compos Mater 58, 585–598 (2022). https://doi.org/10.1007/s11029-022-10051-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10051-0

Keywords

Navigation