Skip to main content
Log in

Features of Inelastic Behavior of a Composite Under Cyclic Loading. Experimental and Theoretical Investigations

  • Published:
Mechanics of Composite Materials Aims and scope

For a carbon-fiber-reinforced plastic made of an ELUR-P unidirectional tape and an ХТ-118 cold-cure binder, specimens with a ±45° stacking sequence were tested for cyclic tension. The total axial strain was considered as the sum of nonlinearly elastic, viscoelastic, and irreversible creep strains. Using the Abel creep kernel, it was found that, at instants of time shifted by values multiples of the loading period, the ratios between the viscoelastic strain components depended neither on the period of cyclic loading, nor the loading amplitude, nor the parameter determining the degree of viscosity of the material, but only on the parameter determining the decrease in the rate of the viscoelastic strain. To find parameters of the creep kernel, an identification method based on the use of a hypothesis that allows one to separate reversible and irreversible creep strains, as well as on the properties of Abel creep kernel was developed. The method is illustrated by an example of processing experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], M., Nauka (1966).

  2. R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press (1982).

  3. R. A. Rzhanitsyn, Theory of Creep [in Russian], M., Gosstroiizdat (1968).

  4. M. A. Koltunov, Creep and Relaxation [in Russian], M., Vysshaya Shkola (1976).

  5. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], M., MGU (1984).

  6. L. M. Kachanov, Theory of Creep [in Russian], M., Gos. Izd. Fiz. Mat. Lit. (1960).

  7. A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, Applications [in Russian], SPb., Professia (2007).

  8. R. A. Sheperi, Viscoelastic behaviour of composite materials. Ser. Composite Materials, vol. 2. Mechanics of Composite Materials [Russian translation], eds. A. A. Ilyushin and B. E. Pobedrya, M., Mir (1978).

  9. A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatlit (2015).

  10. N. Kh. Arutyunyan, “On the theory of creep of nonuniform hereditary aging media,” AN SSSR, 229, No. 3, 569-571 (1976).

    Google Scholar 

  11. V. E. Yudin, V. P. Volodin, and G. N. Gubanova, “Main features of the viscoelastic behavior of carbon-fiber-reinforced plastics with a polymer matrix: model study and calculation,” Mech. Compos. Mater., 33, No. 5, 656-669 (1997).

    Google Scholar 

  12. W. Van Paepegem and J. Degrieck, “A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites,” Int. J. Fatigue, 24, 747-762 (2002).

    Article  Google Scholar 

  13. W. Van Paepegem, “Fatigue damage modelling of composite materials with the phenomenological residual stiffness approach,” Fatigue Life Prediction of Composites and Composite Structures, 1, 102-138 (2010).

  14. H. A. Whitworth, “A stiffness degradation model for composite laminates under fatigue loading,” Compos. Struct., 40, No. 2, 95-101 (1998).

    Article  Google Scholar 

  15. W. Van Paepegem, I. De Baere, and J. Degrieck, “Modelling the nonlinear shear stress-strain response of glass fiber-reinforced composites. Part I: Experimental results,” Compos. Sci. Technol., 66, 1455-1464 (2006).

    Article  Google Scholar 

  16. V. N. Paimushin, R. A. Kayumov, and S. A. Kholmogorov, “Deformation features and models of [±45]2s cross-ply fiber-reinforced plastics under tension,” Mech. Compos. Mater., 55, No. 2, 141-154 (2019).

    Article  CAS  Google Scholar 

  17. I. F. Obraztsov, V. V. Vasil’ev, “Nonlinear phenomenological models of the deformation of fibrous composite materials,” Mech. Compos. Mater., 18, No. 3, 259-362 (1982).

    Article  Google Scholar 

  18. I. G. Teregulov, Nonlinear Problems of Plate Theories and Governing Relations [in Russian], Kazan, Fen (2000).

  19. R. A. Kayumov and I. G. Teregulov, “Structure of governing relations for hereditary elastic materials reinforced with rigid fibers,” Zhurn. Prikl. Mekh. Tekh. Fiz., No. 3, 120-127 (2005).

  20. K. Giannadakis and J. Varna, “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite,” Composites: Part A, No. 62, 67-76 (2014).

  21. K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna, “The sources of inelastic behavior of Glass Fibre/Vinylester noncrimp fabric [±45]s laminates,” J. Reinf. Plast. Compos., 30, No. 12, 1015-1028 (2011).

    Article  CAS  Google Scholar 

  22. L. O. Nordin and J. Varna, “Methodology for parameter identification in nonlinear viscoelastic material model,” Mech. Time Depend. Mater., 9, No. 4, 259-280 (2005). https://doi.org/10.1007/s11043-005-9000-z

    Article  CAS  Google Scholar 

  23. A. A. Adamov, V. P. Matveenko, N. A. Trufanov, and I. N. Shardakov, Methods Applied Viscoelasticity [in Russian], Izd. UrO RAN (2003).

  24. S. S. Davenport, “Correlation of creep and relaxation propeties of copper,” J. Appl. Mech., 5, No. 2, 55-60 (1938).

    Google Scholar 

  25. G. C. Papanicolao, S. P. Zaoutsos, and E. A. Kontou, “Fiber orientation relation of continuous carbon/epoxy composites nonlinear viscoelastic behavior,” Compos. Sci. Technol., 64, No. 16, 2535-2545 (2004).

    Article  Google Scholar 

  26. E. Kontou and A. Kallimanis, “Formulation of the viscoplastic behavior of epoxy-glass fiber composites,” J. Compos. Mater., 39, No. 8, 711-721 (2005).

    Article  CAS  Google Scholar 

  27. R. A. Kayumov, “An expanded identification problem of the mechanical characteristics of materials by test results of structures,” Izv. RAN, Mekh. Tverd. Tela, No. 2, 94-105 (2004).

  28. D. Grop, Identification Method of Systems [Russian translation], M., Mir (1979).

  29. V. N. Paimushin, R. A. Kayumov, and S. A. Kholmogorov, “Experimental investigation of the mechanisms of formation of residual strains in fibrous composites of layered structure at cyclic loading,” Uch. Zap. Kazan Univ., Ser. Fiz. Mat. Nauki, 159, kn. 4, 473-492 (2017).

  30. V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2018).

    Article  CAS  Google Scholar 

  31. V. N. Paimushin, R. A. Kayumov, S. A. Kholmogorov, and V. M. Shishkin, “Governing relations in the mechanics of cross-ply fibrous composites at short- and long-term uniaxial loadings,” Izv. Vuz., Matematika, No. 6, 85-91 (2018).

  32. V. N. Paimushin, R. A. Kayumov, V. A. Firsov, R. K. Gazizullin, S. A. Kholmogorov, and M. A. Shishov, “Tension and compression of flat [+/–45]2s specimens from fiber reinforced plastic: numerical and experimental investigation of forming stresses and strains,” Uchenye Zapiski Kazanskogo Universiteta, Ser. Fiziko-Matematicheskie Nauki, 161, No. 1,. 86-109 (2019). https://doi.org/10.26907/2541-7746.2019.1.86-109

  33. L. M. Kachanov, “On the time of destruction in creep conditions,” Izv. AN SSSR, ОТN, No. 8, 26-31 (1958).

  34. Vibrations in Technics: Reference Book in 6 vol., Vol. 6. Protection against vibrations and impacts [in Russian], ed. K. V. Frolov, M., Mashinostroenie (1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Paimushin.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 4, pp. 611-630, July-August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paimushin, V.N., Kayumov, R.A. & Kholmogorov, S.A. Features of Inelastic Behavior of a Composite Under Cyclic Loading. Experimental and Theoretical Investigations. Mech Compos Mater 56, 411–422 (2020). https://doi.org/10.1007/s11029-020-09893-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09893-3

Keywords

Navigation