Skip to main content
Log in

Finite-Layer Method: Determining the Critical Size of an Interlaminar Crack in the Curved Zone of a composite T-Stringer

  • Published:
Mechanics of Composite Materials Aims and scope

Using the finite-layer method, values of the modal components GI and GII and the total value of energy release rate GT for tips of an interlaminar cylindrical crack in the curved zone of a reinforcing composite stringer are calculated. Reliability of the results is confirmed by convergence on sequentially increasing the number of layers and by comparison of the values GT obtained in two different ways. Parametric studies are carried out, and the ranges of allowable crack dimensions are constructed for two loading cases: the crack is opened (1) and closed (2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. M. Timonin, “Finite-layer method: Calculation of interface stresses in a composite panel reinforced by T-stringers,” Mech. Compos. Mater., 54, No. 3, 359-368 (2018).

    Article  Google Scholar 

  2. E. F. Rybicki and M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Eng. Fracture Mech., 9, 931-938 (1977).

    Article  Google Scholar 

  3. R. Krueger, “The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials,” in Numerical Modelling of Failure in Advanced Composite Materials, Eds: P. Camanho, S. Hallet, Woodhead Publishing (2015).

  4. A. M. Timonin, “Finite-layer method: a unified approach to a numerical analysis of interlaminar stresses, large deflections, and delamination stability of composites. Part 1. Linear behavior,” Mech. Compos. Mater., 49, No. 3, 231-244 (2013).

    Article  Google Scholar 

  5. A. M. Timonin, “Finite-layer method: exact numerical and analytical calculations of the energy release rate for unidirectional composite specimens in double-cantilever beam and end-notched flexure tests,” Mech. Compos. Mater., 52, No. 4, 469-488 (2016).

    Article  Google Scholar 

  6. A. M. Timonin, “Finite-layer method: evaluation of stresses and the modal components of energy release rate on the midplane of edge-cracked composite specimens,” Mech. Compos. Mater., 52, No. 5, 583-600 (2016).

    Article  Google Scholar 

  7. S. K. Godunov, “Numerical solution of boundary-value problems for a system of linear ordinary differential equations,” Uspekhi Matem. Nauk, 16, No. 3, 171-174 (1961).

    Google Scholar 

  8. Ya. M. Grigorenko, Isotropic and Anisotropic Layered Shells of Revolution with a Variable Stiffness [in Russian], Kiev: Naukova Dumka (1973).

  9. A. M. Timonin, “Application of the finite-layer method for the analysis of stress-strain state of multiply connected shell structures,” Proc. of the Fourth All-Russian Science and Tech. Conf. “Dynamics and Strength of the Constructions of Aeroelastic Systems. Numerical methods,” IMASH RAN, Moscow (2017).

  10. A. M. Timonin, “A new refined theory of orthotropic shells and its employment in the finite-layer method,” Proc. of 2nd Int. Conf. “Deformation and Failure of Composite Materials and Structures,” IMASH RAN, Moscow (2016).

  11. D. F. Adams, L. A. Carlsson, and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, CRC Press, New York (2003).

    Google Scholar 

  12. G. Wimmer, C. Schuecker, and H. E. Pettermann. “Numerical simulation in laminated composite components. A combination of a strength criterion and fracture mechanics,” Composites: Part B, 40, 158-165 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Timonin.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 55, No. 3, pp. 451-465, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timonin, A.M. Finite-Layer Method: Determining the Critical Size of an Interlaminar Crack in the Curved Zone of a composite T-Stringer. Mech Compos Mater 55, 315–324 (2019). https://doi.org/10.1007/s11029-019-09814-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09814-z

Keywords

Navigation