Skip to main content

Advertisement

Log in

Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

  • Published:
Mechanics of Composite Materials Aims and scope

Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. A. Zagoruchenko and A. M. Zhuravlyov, Thermophysical Properties of Gaseous and Liquid Methane [in Russian], Izdat. Gosstandart SSSR, Moscow (1969).

  2. A. Ignatkovich, B. Bosello, E. Benedetti, P. Kampane, and M. Milkovich, “Measurement of the permeability of thermally cured linings for gas pipelines and tanks,” in: Theory and practice of production technologies of the articles of composite materials and new metal alloys (TPKMM). Complex computerization of the manufacture of composite materials and their processing into products in high-technology fields of industry. Trans. Moscow Int. Sci. Conf., April 21-24, 2009, Moscow, Russia, Vol. 2, Izdat. “Maska” (2011), pp. 265-274.

  3. N. D. Tskhadaya and E. Z. Yagubov, “Effect of the volume content of fibers on the tightness of fiberglass pipes,” Konstr. Kompoz. Mater., No. 4, 49-52 (2012).

  4. A. Ghouaoula, A. Hocine, D. Chapelle, F. Karaachira, and M. L. Boubakar, “Analytical prediction of damage in the composite part of a type-3 hydrogen storage vessel,” Mech. Compos. Mater., 48, No. 1, 77-88 (2012).

    Article  Google Scholar 

  5. V. V. Vasil’ev, A. F. Razin, and F. K. Sin’kovskii, “Optimum form of a composite pressure cylinder with a metal liner,” Kompoz. Nanostrukt., 1, No. 21, 18-24 (2014).

    Google Scholar 

  6. D. V. Rosato and K. S. Grove, Winding with Glass Fiber. Development of the Method, Manufacture, Application Areas, and Design [Russian translation], Mashinostroenie, Moscow (1968).

  7. M. R. Garnich, R. W. Dalgarno, and D. J. Kenik, “Effects of moisture on matrix cracking in a cryo-cycled cross-ply laminate,” J. Compos. Mater., 45, 2783-2795 (2011).

    Article  Google Scholar 

  8. K. Sanada, H. Sanga, and Ya. Shindo, “Cryogenic tensile and fracture properties of carbon nanofiber/polydicyclopentadiene composites fabricated by ultrasonic method,” J. Compos. Mater., 46, 1431-1438 (2012).

  9. L. V. Evseeva and S. A. Tanaeva, “Thermal behavior of composites containing carbon fibers or nanotubes under cryogenic thermal cycling,” Mech. Compos. Mater., 49, No. 2, 155-162 (2013).

    Article  Google Scholar 

  10. A. Yoshimura, Y. Noji, T. Ogasawara, T. Yokozeki, and S. Ogihara, “Mode II fracture toughness of CFRP adhesive bonded structure at cryogenic temperature,” J. Japan Soc. Compos. Mater., 37, No. 4, 130-137 (2011).

    Article  Google Scholar 

  11. S. Choi and B. V. Sankar, “Micromechanical analysis of composite laminates at cryogenic temperatures,” J. Compos. Mater., 40, No. 12, 1077-1091 (2006).

    Article  Google Scholar 

  12. S. Watanabe, Y. Shindo, T. Takeda, and F. Narita, “Cryogenic mechanical response of multilayer satinweave CFRP composites with cracks,” Mech. Compos. Mater., 44, No. 4, 479-492 (2008).

    Google Scholar 

  13. N. K. Kucher, A. Z. Dveyrin, M. N. Zarazovskii, and M. P. Zemtsov, “Room- and low-temperature deformation of multilayered fiberglass plastics reinforced with a fabric of sateen weave,” Mech. Compos. Mater., 40, No. 3, 217-226 (2004).

    Article  Google Scholar 

  14. M. Sumikawa, Ya. Shindo, T. Takeda, F. Narita, S. Takano, and K. Sanada, “Analysis of Mode I interlaminar fracture and damage behavior of GFRP woven laminates at cryogenic temperatures,” J. Compos. Mater., 39, No. 22, 2053-2066 (2005).

  15. Gluhih S., Kovalov A., Tishkunov A., Akishin A., Chate A., Auzinsh E. and Kalninsh M. Identification of the elastic modulus of polymeric materials by using thin-walled cylindrical specimens,” Mech. Compos. Mater., 48, No. 1, 57-64 (2012).

    Article  Google Scholar 

  16. A. M. Kuperman and R. A. Turusov, “Relaxation characteristics of reinforced plastics in tension of ring specimens by split disks,” Mech. Compos. Mater., 48, No. 3, 305-312 (2012).

    Article  Google Scholar 

  17. S. V. Bochkarev and D. A. Gimervert, “Seepage of polymeric binder in articles formed from composite materials subjected to winding and set in a nonuniform temperature field,” Mech. Compos. Mater., 25, No. 4, 555-558 (1989).

    Article  Google Scholar 

  18. H. Suemasu and K. Sakajiri, “A failure mechanism of pressure vessels from filament-wound hoop layer,” J. Compos. Mater., 44, 657-673 (2010).

    Article  Google Scholar 

  19. M. S. Oliver and W. S. Johnson, “Effect of temperature on mode I interlaminar fracture of IM7/PETI-5 and IM7/977-2 laminates,” J. Compos. Mater., 43, No. 10, 1213-1219 (2009).

    Article  Google Scholar 

  20. M. Černỳ, P. Glogar, and Z. Sucharda, “Mechanical properties of basalt fiber reinforced composites prepared by partial pyrolysis of a polymer precursor,” J. Compos. Mater., 43, No. 9, 1109-1120 (2009).

    Article  Google Scholar 

  21. Z. F. Zhang, Ye Xin, “Mechanical properties of basalt-fiber-reinforced polyamide-6/polypropylene composites,” Mech. Compos. Mater., 50, No. 4, 509-514 (2014).

  22. A. A. Dalinkevich, K. Z. Gumargalieva, A. V. Marakhovskii, and S. S. Sukhanov, “Modern basalt fibers and polymer composite materials on their basis (review),” Konstr. Kompoz. Mater., 3, 37-54 (2010).

    Google Scholar 

  23. T. K. Musina, “Heat-resistant reinforcing fibers for composite materials of the third generation,” in: Theory and practice of production technologies of the articles of composite materials and new metal alloys (TPKMM). Complex computerization of manufacture of composite materials and their processing into products in high-technology fields of industry. Trans. Moscow Int. Sci. Conf., April 21-24, 2009, Moscow, Russia, Vol. 1, Izdat. “Maska” (2011), pp. 325-330.

  24. I. V. Tikhonov, A. V. Tokarev, S. V. Shorin, V. M. Schetinin, T. E. Chernykh, and V. G. Bova, “Home aramid fibers: past–present–future,” Khim. Vol., No. 1, 3-9 (2013).

  25. K. S. Pakhomov, J. V. Antipov, I. D. Simonov, A. A. Kul’kov, and A. V. Gorbachev, “Physicomechanical stability of aramid fibers to the influence of high temperatures,” Plast. Massy, No. 1, 22-25 (2014).

  26. K. Sakata, G. Ben, and M. Toyoda, “Optimum design of the CFRP pressure vessel reinforced with SMA wire-FEM analysis and proving experiments,” J. Japan Soc. Compos. Mater., 36, No. 2, 48-54 (2010).

    Article  Google Scholar 

  27. Yu. V. Antipov, N. M. Demina, A. A. Kul’kov, A. N. Trofimov, and P. M. Khavalkin, “Organoplastics for load-carrying structures,” Plast. Massy, No. 2, 44-48 (2013).

  28. M. A. Kumar, G. R. Reddy, Y. S. Bharathi, S. V. Naidu, and V. N. P. Naidu, “Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal-glass fiber epoxy hybrid composites,” J. Compos. Mater., 44, No. 26, 3195-3202 (2010).

    Article  Google Scholar 

  29. V. A. Zorin, “Application of composite materials in the products of aviation and space-rocket facilities (review),” Konstr. Kompoz. Mater., No. 4, 44-59 (2011).

  30. A. I. Tsaplin and S. V. Bochkarev, “Modeling heat transfer when filling the CNG engine,” Transp. Al’ternat. Topl., 3, No. 21, 66-69 (2011). (Такой журнал есть на русском, изд. в Минске)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Tsaplin.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 51, No. 6, pp. 1027-1040 , November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsaplin, A.I., Bochkarev, S.V. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures. Mech Compos Mater 51, 721–730 (2016). https://doi.org/10.1007/s11029-016-9542-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9542-y

Keywords

Navigation