Skip to main content
Log in

Modeling the Progressive Failure of Laminated Composites

  • Published:
Mechanics of Composite Materials Aims and scope

An approach to the modeling of progressive failure that shows adequate results and can be used in practice to validate the strength of a composite structure is presented. The approach is based on the idea of instantaneous local failure in a layer in accordance with a failure criterion and further degradation of material stiffnesses. Calculation results for the progressive failure of a cross-ply specimen with a stress concentrator in the form of a circular hole are given. The pattern of layerwise failure growth is presented and compared with typical points of the stress–strain diagram. The efficiency of different failure criteria is studied for a composite specimen with known experimental data. The results of numerical simulation are compared with X-ray patterns of the specimen at different values of applied load. It is concluded that the method based on the 3D Hashin failure criterion gives the best qualitative and quantitative agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. H. Gosse and S. Christensen, “Strain invariant failure criteria for polymers in composite materials,” AIAA, 1184 (2001).

  2. J. S. Mayes and A. C. Hansen, “A comparison of multicontinuum theory-based failure simulation with experimental results,” Compos. Sci. Technol., 64, Nos. 3/4, 517-527 (2004).

    Article  Google Scholar 

  3. S. K. Ha, K. K. Jin, and Y. Huang, “Micro-mechanics of failure (MMF) for continuous fiber reinforced composites,” J. Compos. Mater., 42, 1873-1895 (2008).

    Article  Google Scholar 

  4. J. H. Ahn and A. M. Waas, “Micromechanics-based predictive model for compressively loaded angle-ply composite laminates,” AIAA J., 38, No. 12, 2299-2304 (2000).

    Article  Google Scholar 

  5. J. Ahn and A. M. Waas, “The failure of notched composite laminates under compression using integrated macro-micromechanics model,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., April18-21, Austin, Texas, AIAA 2005-1954, 1-14 (2005).

  6. M. J. Hilton, P. D. Soden, and A. S. Kaddour, Failure Criteria in Fiber Reinforced Polymer Composites: The World-Wide Failure Exercise, Elsevier, Oxford (2004).

    Google Scholar 

  7. I. M. Daniel, “Failure of composite materials,” Strain, 43, No. 1, 4-12 (2007).

    Article  Google Scholar 

  8. U. Icardi, S. Locatto, G. Student, and A. Longo, “Assessment of recent theories for predicting failure of composite laminates,” Appl. Mech. Rev., 60, No. 2, 76-86 (2007).

    Article  Google Scholar 

  9. M. J. Hilton, A. S. Kaddour, and P. D. Soden, “A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence,” Compos. Sci. Technol., 62, Nos. 12/13, 1725-1797 (2002).

    Google Scholar 

  10. M. T. Kortschot and P. W. R. Beaumont, “Damage mechanics of composite materials: II — A damaged-based notched strength model,” Compos. Sci. Technol., 39, No. 4, 303-326 (1990).

    Article  Google Scholar 

  11. S. R. Hallett and M. R. Wisnom, “Experimental investigation of progressive damage and the effect of lay-up in notched tensile tests,” J. Compos. Mater., 40, No. 2, 119-141 (2006).

    Article  Google Scholar 

  12. D. R. Ambur, N. Jaunky, and M. Hilburger, “Progressive failure analyses of compression-loaded composite curved panels with and without cutouts,” Compos. Struct., 65, No. 2, 143-155 (2004).

    Article  Google Scholar 

  13. R. M. O’Higgins, M. A. McCarthy, and C. T. McCarthy, “Comparison of open hole tension characteristics of high strength glass and carbon fiber-reinforced composite materials,” Compos. Sci. Technol., 68, 2770-2778 (2008).

    Article  Google Scholar 

  14. S. C. Tan, “A progressive failure model for composite laminates containing openings,” J. Compos. Mater., 25, 556-577 (1991).

    Google Scholar 

  15. P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, No. 24, 2248-2280 (1999).

    Article  Google Scholar 

  16. T. E. Tay, G. Liu, V. B. C. Tan, X. S. Sun, and D. C. Pham, “Progressive failure analysis of composites,” J. Compos. Mater., 42, 1921-1966 (2008).

    Article  Google Scholar 

  17. R. Krueger, “Virtual crack closure technique. History, approach and applications,” Appl. Mech. Rev., 57, No. 2, 109-143 (2004).

    Article  Google Scholar 

  18. R. Borg, L. Nilsson, and K. Simonsson, “Simulation of delamination in fiber composites with a discrete cohesive failure model,” Compos. Sci. Technol., 61, No. 5, 667-677 (2001).

    Article  Google Scholar 

  19. D. Xie and A. M. Waas, “Discrete cohesive zone model for mixed-mode fracture using finite element analysis,” Eng. Fract. Mech., 73, No. 13, 1783-1796 (2006).

    Article  Google Scholar 

  20. A. Turon, P. P. Camanho, J. Costa, and C. G. Davila, “A damage model for the simulation of delamination in advanced composites under variable-mode loading,” Mech. Mater., 38, No. 11, 1072-1089 (2006).

    Article  Google Scholar 

  21. D. H. Robbins, J. N. Reddy, and F. Rostam-Abadi, “Layerwise modeling of progressive damage in fiber-reinforced composite laminates,” Int. J. Mech. Mater. Design, 2, No. 3, 19-36 (2005).

    Google Scholar 

  22. T. Sadowski, Multiscale Modeling of Damage and Fracture Processes in Composite Materials, Springer (2005).

  23. P. Ladeveze, “Multiscale computational damage modeling of laminate composites,” in: T. Sadowski (ed.), Multiscale Modeling of Damage and Fracture Processes in Composite Materials, Springer (2005), pp. 171-212.

  24. C. Gonzalez and J. Llorca, “Multiscale modeling of fracture in fiber-reinforced composites,” Acta Materialia, 54, 4171-4181 (2006).

    Article  Google Scholar 

  25. Y. Xiao and T. Ishikawa, “Bearing failure in bolted composite joints. Analytical tools development,” Adv. Compos. Mater., 11, No. 4, 375-391 (2002).

    Article  Google Scholar 

  26. A. Riccio, “Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load. Pt II. Numerical studies,” J. Compos. Mater., 39, No. 23, 2091-2112 (2005).

    Article  Google Scholar 

  27. S. T. Pinho, L. Iannucci, and P. Robinson, “Physically based failure models and criteria for laminated fiber-reinforced composites with emphasis on fiber kinking. Pt II. FE implementation,” Composites: Pt A. Appl. Sci. Manufact., 37, No. 5, 766-777 (2006).

    Article  Google Scholar 

  28. T. E. Tay, G. Liu, and V. B. C. Tan, “Damage progression in open-hole tension laminates by the SIFT-EFM approach,” J. Compos. Mater., 40, No. 11, 971-992 (2006).

    Article  Google Scholar 

  29. F. K. Chang, L. Lessard, and J. M. Tang, “Compression response of laminated composites containing an open hole,” SAMPE Quarterly, 19, No. 4, 46-51 (1988).

    Google Scholar 

  30. X. Liu and G. Wang, “Progressive failure analysis of bonded composite repairs,” Compos. Struct., 81, No. 3, 331-340 (2007).

    Article  Google Scholar 

  31. C. T. McCarthy, M. A. McCarthy, and V. P. Lawlor, “Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearances,” Composites: Pt B, 36, No. 4, 290-305 (2005).

    Article  Google Scholar 

  32. P. P. Camanho and F. L. Matthews, “Stress analysis and strength prediction of mechanically fastened joints in FRP: a Review,” Composites: Pt A, 28, No. 6, 529-547 (1997).

    Article  Google Scholar 

  33. K. I. Tserpes, P. Papanikos, and T. Kermanidis, “A three-dimensional progressive model for bolted joints in composite laminates subjected to tensile loading,” Fatig. Fract. Eng. Mater. Struct., 24, No. 10, 663-675 (2001).

    Article  Google Scholar 

  34. F. Laurin, N. Carrere, and J. F. Maire, “A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models,” Composites: Pt A. Appl. Sci. Manufact., 38, No. 1, 198-209 (2007).

    Article  Google Scholar 

  35. Y. S. N. Reddy, C. M. D. Moorthy, and J. N. Reddy, “Non-linear progressive failure analysis of laminated composite plates,” Int. J. Non-Linear Mech., 30, No. 5, 629-649 (1995).

    Article  Google Scholar 

  36. S. Goswami, “A finite element investigation on progressive failure analysis of composite bolted joints under thermal environment,” J. Reinf. Plast. Compos., 24, No. 2, 161-171 (2005).

    Article  Google Scholar 

  37. J. Costa, A. Turon, D. Trias, N. Blanco, and J. A. Mayugo, “A progressive damage model for unidirectional fiberreinforced composites based on fiber fragmentation. Pt II. Stiffness reduction in environment sensitive fibers under fatigue,” Compos. Sci. Technol., 65, No. 14, 2269-2275 (2005).

    Article  Google Scholar 

  38. Y. Huang, K. K. Jin, and S. K. Ha, “Effects of fiber arrangement on mechanical behavior of unidirectional composites,” J. Compos. Mater., 42, 1851-1871 (2008).

    Article  Google Scholar 

  39. O. O. Ochoa and J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Academic Publ., Netherlands (1992).

    Book  Google Scholar 

  40. O. Hoffman, “The brittle strength of orthotropic materials,” J. Compos. Mater., 1, 200-206 (1967).

    Article  Google Scholar 

  41. S. W. Tsai, Strength Characteristics of Composite Materials, NASA CR-224 (1965).

  42. S. W. Tsai and Wu. E. M., “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).

  43. Z. Hashin, “Failure criteria for unidirectional fiber composites,” ASME J. Appl. Mech., 47, 329-334 (1980).

    Article  Google Scholar 

  44. Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., 7, 448-464 (1973).

    Article  Google Scholar 

  45. R. M. Christensen, “The numbers of elastic properties and failure parameters for fiber composites,” J. Eng. Mater. Tech., Trans. ASME, 120, 110-113 (1998).

    Article  Google Scholar 

  46. S. C. Tan and R. J. Nuismer, “A theory for progressive matrix cracking in composite laminates,” J. Compos. Mater., 23, 1029-1047 (1989).

    Article  Google Scholar 

  47. S. C. Tan and J. Perez, “Progressive failure of laminated composites with a hole under compressive loading,” J. Reinf. Plast. Compos., 12, 1043-1057 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kozlov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 51, No. 6, pp. 991-1006, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, M.V., Sheshenin, S.V. Modeling the Progressive Failure of Laminated Composites. Mech Compos Mater 51, 695–706 (2016). https://doi.org/10.1007/s11029-016-9540-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9540-0

Keywords

Navigation