Skip to main content
Log in

Comparison of Fracture Energies of Epoxy-polysulfone Matrices and Unidirectional Composites Based on Them

  • Published:
Mechanics of Composite Materials Aims and scope

The fracture energies of modified epoxy matrices and unidirectional glass (GFRP)-, organic (OFRP)-, and carbon (CFRP)-fiber-reinforced plastics based on them are compared. The unidirectional composites were fabricated by winding. Epoxy-polysulfone compositions were used as matrices containing from 5 to 20 wt.% of PSK-1 polysulfone. The matrices were cured with triethanolaminotitanate. It is shown that the fracture mechanisms of GFRP, OFRP, and CFRP in shear differ, which is supposedly related to the nature of fibers. The fracture energy of reinforced plastics is mainly determined by the impact strength of matrix. The delamination energy G cmIR of GFRP, OFRP, and CFRP increased monotonically with content of polysulfone in the matrix. A marked growth in G cmIR was observed at a content of polysulfone exceeding 10 wt.%. The crack resistance of the composites under investigation increased two times. The fracture toughness of GFRP and OFRP was 3-4 times higher than that of CFRP at any concentration of polysulfone. A growth in G mIR of the matrices started when the content of PSK-1 exceeded 5 wt.%, and at 15-20 wt.% of PSK-1, the values of G mIR increased four times. In all the cases investigated, a correlation between the crack resistance of reinforced plastics and that of polymeric matrices was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. V. Bologov, A. M. Kuperman, and M. G. Karpman, “Effect of modification of an epoxy binder with a nitrile rubber on the physicomechanical properties of a unidirectional CFRP,” Mekh. Kompozits. Mater. Konstr., 5, No. 4, 33-41 (1999).

    Google Scholar 

  2. W. D. Bascom, J. L. Bitner, R. J. Moulton, and A. R. Siebert, “The interlaminar fracture of organic-matrix, woven reinforcement composites,” Composites, 11, No. 1, 9-18 (1980).

    Article  Google Scholar 

  3. M. L. Kerber et al., Polymer Composite Materials. Structure. Properties. Technologies. Manual, Professiya (2008).

  4. N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al., Physics of Composite Materials [in Russian], Mir, Moscow (2005).

    Google Scholar 

  5. K. Mimura, H. Ito, and H. Fujioka, “Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins,” Polymer, 41, 4451-4459 (2000).

    Article  Google Scholar 

  6. I. Martinez, M. D. Martin, A. Eceiza, P. Oyanguren, and I. Mondragon, “Phase separation in polysulfone-modified epoxy mixtures. Relationship between curing conditions, morphology and ultimate behavior,” Polymer, 41, 1027-1035 (2000).

    Article  Google Scholar 

  7. P. T. McGrail and S. D. Jenkins, “Some aspects of interlaminar toughening: reactively terminated thermoplastic particles in thermoset composites,” Polymer, 34, No. 4, 677-683 (1993).

    Article  Google Scholar 

  8. E. V. Pisanova, S. F. Zhandarov, and O. R. Yurkevich, “Epoxy-polysulfone networks as advanced matrices for composite materials,” J. Adhesion, 64, No. 1, 111-129 (1997).

    Article  Google Scholar 

  9. Seunghan Shin and Jyongsik Jang, “The effect of thermoplastic coating on the mechanical properties of woven fabric carbon-epoxy composites,” J. Mater. Sci., 35, 2047-2054 (2000).

    Article  Google Scholar 

  10. V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRPs based on an epoxy resin modified with polysulphone or an epoxyurethane oligomer,” Mech. Compos. Mater., 42, No. 6, 739-758 (2006).

    Article  Google Scholar 

  11. V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional CFRPs based on an epoxy resin modified with polysulphone or epoxyurethane oligomer,” Mekh. Kompozits. Mater. Konstr., 14, No. 2, 224-235 (2008).

    Google Scholar 

  12. W. J. Cantwell and J. Morton, “The impact resistance of composite materials — a review,” Composites, 22, No. 5, 347-362 (1991).

    Article  Google Scholar 

  13. R. L. Ellis, F. Lalande, H. Jia, and C. A. Rogers, “Ballistic impact resistance of SMA and Spectra hybrid graphite composites,” Polymer, 38, No. 2, 269-277 (1997).

    Article  Google Scholar 

  14. A. V. Antonov, E. S. Zelenskii, A. M. Kuperman, O. V. Lebedeva, and A. A. Rybin, “Behavior of reinforced plastics based on polysulfone matrix under impact loading,” Mech. Compos. Mater., 34, No. 1, 12-19 (1998).

    Article  Google Scholar 

  15. V. V. Vasil’ev and Yu. M. Tarnopol’skii (eds.), Composite Materials. Handbook [in Russian], Mashinostroenie, Moscow (1990).

    Google Scholar 

  16. P. G. Babaevskii (ed.), Practical Works in the Science of Polymer Materials [in Russian], Khimiya, Moscow (1980).

    Google Scholar 

  17. P. G. Babaevskii and S. G. Kulik, Crack Resistance of Cured Polymer Compositions [in Russian], Khimiya, Moscow (1991).

    Google Scholar 

  18. V. I. Solodilov, S. L. Bazhenov, Yu. A. Gorbatkina, and A. M. Kuperman, “Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments,” Mech. Compos. Mater., 39, No. 5, 407-414 (2003).

    Article  Google Scholar 

  19. B.-G. Min, J. H. Hodgkin, and Z. H. Stachurski, “Reaction mechanism, microstructure, and fracture properties of thermoplastic polysulfone-modified epoxy resin,” J. Appl. Polym. Sci., 50, No. 6, 1065-1072 (1993).

    Article  Google Scholar 

  20. Hyun Sung Min and Sung Chul Kim, “Fracture toughness of polysulfone/epoxy semi-IPN with morphology spectrum,” Polymer Bulletin, 42, No. 2, 221-227 (1999).

    Article  Google Scholar 

  21. Ping Haung, Sixun Zheng, Jinyu Huang, Qipeng Guo, and Wei Zhu, “Miscibility and mechanical properties of epoxy resin/polysulfone blends,” Polymer, 38, No. 22, 5565-5571 (1997).

    Article  Google Scholar 

  22. H. Kishi, Y.-B. Shi, J. Huang, and A. F. Yee, “Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone,” J. Mater. Sci., 32, 761-771 (1997).

    Article  Google Scholar 

  23. Zhikai Zhong, Sixun Zheng, Jinyu Huang, Xingguo Cheng, Qipeng Guo, and Jun Wei, “Phase behavior and mechanical properties of epoxy resin containing phenolphthalein poly(ether ether ketone),” Polymer, 39, No. 5, 1075-1080 (1998).

    Article  Google Scholar 

  24. A. E. Chalykh, V. K. Gerasimov, A. E. Bukhteev, A. V. Shapagin, G. Kh. Kudryakova, T. V. Brantseva, Yu. A. Gorbatkina, and M. L. Kerber, “Compatibility and evolution of the phase structure of blends of polysulfone with setting epoxy oligomers,” Vysokomol. Soed., 45A, No. 7, 1148-1159 (2003).

    Google Scholar 

  25. Yu. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New-York–London (1992).

    Google Scholar 

  26. T. V. Brantseva, Yu. A. Gorbatkina, V. Dutschk, K. Schneider, and R. Habler, “Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fiber composites. III. Properties of the cured blends and their structures in the polymer/fiber interphase,” J. Adhes. Sci. Technol., 18, No. 11, 1309-1323 (2004).

    Article  Google Scholar 

  27. T. V. Brantseva, Yu. A. Gorbatkina, E. Mader, V. Dutschk, and M. L. Kerber, “Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fiber composites. II. Adhesion of the epoxy-polysulfone matrices to glass fibers,” J. Adhes. Sci. Technol., 18, No. 11, 1293-1308 (2004).

    Article  Google Scholar 

  28. T. V. Brantseva, Yu. A. Gorbatkina, and M. L. Kerber, “Adhesion of epoxy-thermoplastic and polysulfone–LCP matrices to fibers,” Compos. Interfaces, 12, Nos. 3-4, 187-200 (2005).

    Article  Google Scholar 

  29. B. F. Sorensen and T. K. Jacobsen, “Large-scale bridging in composites: R-curves and bridging laws,” Composites, 29A, 1443-1451 (1998).

    Article  Google Scholar 

  30. T. K. Jacobsen and B. F. Sorensen, “Mode I intra-laminar crack growth in composites — modelling of R-curves from measured bridging laws,” Composites, 32A, 1-11 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Solodilov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 51, No. 2, pp. 253-272 , March-April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodilov, V.I., Korokhin, R.A., Gorbatkina, Y.A. et al. Comparison of Fracture Energies of Epoxy-polysulfone Matrices and Unidirectional Composites Based on Them. Mech Compos Mater 51, 177–190 (2015). https://doi.org/10.1007/s11029-015-9488-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9488-5

Keywords

Navigation