Skip to main content

History of Supernovae as Distance Indicators

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Supernovae
  • 413 Accesses

Abstract

Supernovae (SNe) have been used to measure cosmological distances throughout modern astrophysics. The large luminosity and a relatively uniform appearance have made them primary distance indicators and placed them in a leading role in cosmology. They have contributed to three revolutions in cosmic world views: the historical supernovae SN 1572 and SN 1604 were recognized as coming from beyond the planetary spheres, the projected overdensity of (super)novae on nebulae hinted at the extragalactic nature of galaxies, and the mapping of the cosmic expansion rate through type Ia supernovae led to the discovery of the accelerated expansion of the universe and dark energy. This chapter traces these three paradigm shifts and describes the steps needed to make supernovae the precise cosmological tool they are today. We outline several of the methods and describe the basic assumptions. Supernovae have played a very critical role in the measurement of the Hubble constant and this chapter gives an account leading up to the current value for H0. Today, supernovae provide individual extragalactic distances with an accuracy unmatched by any other method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aldering G, Adam G, Antilogus P, Astier P, Bacon R, Bongard S et al (2002) Overview of the nearby supernova factory. In: Tyson JA, Wolff S (eds) Survey and other telescope technologies and discoveries. SPIE conference series, vol 4836. Society of Photo-optical Instrumentation Engineers, Bellingham, pp 61–72

    Chapter  Google Scholar 

  • Arnett WD, Branch D, Wheeler JC (1985) Hubble’s constant and exploding carbon-oxygen white dwarf models for Type I supernovae. Nature 314:337–338

    Article  ADS  Google Scholar 

  • Astier P, Guy J, Regnault N, Pain R, Aubourg E, Balam D et al (2006) The supernova legacy survey: measurement of \(\Omega _{\mathrm{M}}\), \(\Omega _{\Lambda }\) and w from the first year data set. A&A 447:31–48

    Article  ADS  Google Scholar 

  • Baade W (1926) Über eine Möglichkeit, die Pulsationstheorie der δ Cephei-Veränderlichen zu prüfen. Astron Nachr 228:359–362

    Article  ADS  Google Scholar 

  • Baade W, Zwicky F (1934) On super-novae. Publ Natl Acad Sci 20:254–259

    Article  ADS  Google Scholar 

  • Baltay C, Rabinowitz D, Hadjiyska E, Walker ES, Nugent P, Coppi P et al (2013) The La Silla-QUEST low redshift supernova survey. PASP 125:683–694

    Article  ADS  Google Scholar 

  • Barbon R, Cappaccioli M, Ciatti F (1975) Studies of supernovae. A&A 44:267–271

    ADS  Google Scholar 

  • Barbon R, Ciatti F, Rosino L (1973) Light curves and characteristics of recent supernovae. A&A 29:57–67

    ADS  Google Scholar 

  • Barbon R, Ciatti F, Rosino L (1974) On the light curve of type I supernovae. In: Cosmovici CB (ed) Supernovae and supernova remnants. Astrophys Sp Sci Libr 45:99–102

    Article  ADS  Google Scholar 

  • Barbon R, Ciatti F, Rosino L (1979) Photometric properties of type II supernovae. A&A 72:287–292

    ADS  Google Scholar 

  • Baron E, Nugent P, Branch D, Hauschildt P (2004) Type IIP supernovae as cosmological probes: a spectral-fitting expanding atmosphere model distance to SN 1999em. ApJ 616:L91–L94

    Article  ADS  Google Scholar 

  • Bartel N (1985) Supernovae as distance indicators. Lecture notes in physics, vol 224. Springer, Berlin

    Google Scholar 

  • Bartel N, Bietenholz MF (2003) SN 1979C VLBI: 22 years of almost free expansion. ApJ 591:301–315

    Article  ADS  Google Scholar 

  • Bartel N, Rogers AEE, Shapiro II, Gorenstein MV, Gwinn CR, Marcaide JM, Weiler KW (1985) Hubble’s constant determined using very-long baseline interferometry of a supernova. Nature 318:25–30

    Article  ADS  Google Scholar 

  • Bartel N, Bietenholz MF, Rupen MP, Dwarkadas VV (2007) SN 1993J VLBI. IV. A geometric distance to m81 with the expanding shock front method. ApJ 668:924–940

    Article  ADS  Google Scholar 

  • Blondin S, Matheson R, Kirshner RP, Mandel KS, Berlind P, Calkins M et al (2012) The spectroscopic diversity of type Ia supernovae. AJ 143:126(33pp)

    Article  ADS  Google Scholar 

  • Bose S, Kumar B (2014) Distance determination to eight galaxies using expanding photosphere method. ApJ 782:98(12pp)

    Article  ADS  Google Scholar 

  • Brahe T (1573) De Nova Et Nullius Aevi Memoria A Mundi Exordio Prius Conspecta Stella. E.g. in Dreyer JLE (ed), Tychonis Brahe Dani Opera Omnia (Copenhagen: Libraria Gyldendaliana (1913–1929))

    Google Scholar 

  • Branch D (1982) The Hubble diagram for type I supernovae. ApJ 258:35–40

    Article  ADS  Google Scholar 

  • Branch D (1987) Blackbody emissivity of supernova 1987A and the extragalactic distance scale. ApJ 320:L23–L25

    Article  ADS  Google Scholar 

  • Branch D (1998) Type Ia supernovae and the Hubble constant. ARAA 36:17–56

    Article  ADS  Google Scholar 

  • Branch D, Bettis C (1978) The Hubble diagram for supernovae. AJ 83:224–227

    Article  ADS  Google Scholar 

  • Branch D, Patchett B (1973) Type I supernovae. MNRAS 161:71–83

    Article  ADS  Google Scholar 

  • Branch D, Tammann GA (1992) Type Ia supernovae as standard candles. ARAA 30:359–389

    Article  ADS  Google Scholar 

  • Cadonau R, Tammann GA, Sandage A (1985) Type I supernovae as standard candles. In: Bartel N (ed) Supernovae as distance indicators. Lecture notes in physics, vol 224. Springer, Berlin/New York, pp 151–165

    Chapter  Google Scholar 

  • Cadonau R, Leibundgut B (1990) Supernova studies. I – a catalogue of magnitude observations of supernovae I. A&AS 82:145–178

    Google Scholar 

  • Cappellaro E (2005) Seventy years of supernova searches. In: Turatto M, Benetti S, Zampieri L, Shea W (eds) 1604–2004: supernovae as cosmological lighthouses. ASPC, vol 342. Astronomical Society of the Pacific, San Francisco, pp 71–77

    Google Scholar 

  • Chilukuri M, Wagoner RV (1988) Type-II supernova photospheres and the distance to supernova 1987A. In: Nomoto K (ed) Atmospheric diagnostics of stellar evolution. Lecture notes in physics, vol 305. Springer, Berlin/New York, pp 295–304

    Google Scholar 

  • Colgate SA, McKee C (1969) Early supernova luminosity. ApJ 157:623–643

    Article  ADS  Google Scholar 

  • Contreras C, Hamuy M, Phillips MM, Folatelli G, Suntzeff NB, Persson SE et al (2010) The carnegie supernova project: first photometry data release of low-redshift type Ia supernovae. AJ 139:519–539

    Article  ADS  Google Scholar 

  • Cosmovici CB (1974) Supernovae and supernova remnants. Astrophysics and space science library, vol 45. Reidel, Dordrecht

    Book  Google Scholar 

  • Curtis HD (1921) The scale of the universe. Bull Natl Res Counc 2:194–217

    Google Scholar 

  • Dawson KS, Aldering G, Amanullah R, Barbary K, Barrientos LF, Brodwin M et al (2009) An intensive Hubble space telescope survey for z¿1 type Ia supernovae by targeting galaxy clusters. AJ 138:1271–1283

    Article  ADS  Google Scholar 

  • de Jaeger T, González-Gaitán S, Anderson J et al (2015) A Hubble diagram from type II supernovae based solely on photometry: the photometry color method. ApJ 815:121(13pp)

    Article  ADS  Google Scholar 

  • Dessart L, Hillier DJ (2005) Quantitative spectroscopy of photospheric-phase type II supernovae. A&A 437:667–685

    Article  ADS  Google Scholar 

  • Dessart L, Hillier DJ (2006) Quantitative spectroscopic analysis of and distance to SN1999em. A&A 447:691–707

    Article  ADS  Google Scholar 

  • Dhawan S, Leibundgut B, Spyromilio J, Maguire K (2015) Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum. MNRAS 448:1345–1359

    Article  ADS  Google Scholar 

  • Doggett JB, Branch D (1985) A comparative study of supernova light curves. AJ 90:2303–2311

    Article  ADS  Google Scholar 

  • Eastman RG, Kirshner RP (1989) Model atmospheres for SN 1987A and the distance to the large magellanic cloud. ApJ 347:771–793

    Article  ADS  Google Scholar 

  • Eastman RG, Schmidt BP, Kirshner RP (1996) The atmospheres of type II supernovae and the expanding photosphere method. ApJ 466:911–937

    Article  ADS  Google Scholar 

  • Elias JH, Frogel JA, Hackwell JA, Persson SE (1981) Infrared light curves of Type I Supernovae. ApJ 251:L13–L16

    Article  ADS  Google Scholar 

  • Elias JH, Matthews K, Neugebauer G, Persson SE (1985) Type I supernovae in the infrared and their use as distance indicators. ApJ 296:379–389

    Article  ADS  Google Scholar 

  • Elmhamdi A, Danziger IJ, Chugai N, Pastorello A, Turatto M, Cappellaro E et al (2003) Photometry and spectroscopy of the type IIP SN 1999em from outburst to dust formation. MNRAS 338:939–956

    Article  ADS  Google Scholar 

  • Evans R (1994) Searching for supernovae–visually and otherwise. Proc Aust Soc Astron 11:7–11

    Article  ADS  Google Scholar 

  • Filippenko AV, Richmond MW, Matheson T, Shields JC, Burbidge EM, Cohen RD et al (1992a) The peculiar type IA SN 1991T – detonation of a white dwarf? ApJ 384:L15–L18

    Article  ADS  Google Scholar 

  • Filippenko AV, Richmond MW, Branch D, Gaskell M, Herbst W, Ford CH et al (1992b) The subluminous, spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374. AJ 104:1543–1556

    Article  ADS  Google Scholar 

  • Freedman WL, Madore BF (2010) The Hubble constant. ARAA 48:673–710

    Article  ADS  Google Scholar 

  • Freedman WL, Madore BF, Gibson BK, Ferrarese L, Kelson DD, Sakai S et al (2001) Final results from the Hubble space telescope key project to measure the Hubble constant. ApJ 553:47–72

    Article  ADS  Google Scholar 

  • Freedman WL, Burns CR, Phillips MM, Wyatt P, Persson SE, Madore BF et al (2009) The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z ∼ .7. ApJ 704:1036–1058

    Article  ADS  Google Scholar 

  • Frieman JA, Bassett B, Becker A, Choi C, Cinabro D, DeJongh F et al (2008) The sloan digital sky survey-II supernova survey: technical summary. AJ 135:338–347

    Article  ADS  Google Scholar 

  • Frogel JA, Brooke G, Kawara K, Laney D, Phillips MM, Terndrup D et al (1987) Infrared photometry and spectroscopy of supernova 1986g in NGC 5128-centaurus A. ApJ 315:L129–L134

    Article  ADS  Google Scholar 

  • Gall EEE, Kotak R, Leibundgut B, Taubenberger S, Hillebrandt W, Kromer M (2016) Applying the expanding photosphere and standardized candle methods to type II-plateau supernovae at cosmologically significant redshifts: the distance to SN 2013eq. A&A 592:A129(12pp)

    Article  ADS  Google Scholar 

  • Goobar A, Leibundgut B (2011) Supernova cosmology: legacy and future. ARNPS 61:251–279

    ADS  Google Scholar 

  • Guy J, Astier P, Nobili S, Regnault N, Pain R (2005) SALT: a spectral adaptive light curve template for type Ia supernovae. A&A 443:781–791

    Article  ADS  Google Scholar 

  • Guy J, Astier P, Baumont S, Hardin D, Pain R, Regnault N et al (2007) SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. A&A 466:11–21

    Article  ADS  Google Scholar 

  • Hamuy M, Pinto P (2002) Type II supernovae as standardized candles. ApJ 566:L63–L65

    Article  ADS  Google Scholar 

  • Hamuy M, Maza J, Phillips MM, Suntzeff NB, Wischnjewsky M, Smith RC et al (1993) The 1990 Calán/Tololo supernova search. AJ 106:2392–2407

    Article  ADS  Google Scholar 

  • Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Antezana AR et al (1996a) BVRI light curves for 29 type Ia supernovae. AJ 112:2408–2437

    Article  ADS  Google Scholar 

  • Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Smith RC et al (1996b) The morphology of type Ia supernovae light curves. AJ 112:2438–2447

    Article  ADS  Google Scholar 

  • Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Avilés R (1996c) The Hubble diagram of the Calán/Tololo type Ia supernovae and the value of H. AJ 112:2398–2407

    Article  ADS  Google Scholar 

  • Hamuy M, Pinto PA, Maza J, Suntzeff NB, Phillips MM, Eastman RG et al (2001) The distance to SN 1999em from the expanding photosphere method. ApJ 558:615–642

    Article  ADS  Google Scholar 

  • Hamuy M, Folatelli G, Morrell NI, Phillips MM, Suntzeff NB, Persson SE et al (2006) The Carnegie supernova project: the Low-Redshift survey. PASP 118:2–20

    Article  ADS  Google Scholar 

  • Hansen L, Nørgaard-Nielsen HU, Jørgensen HE (1987) Search for supernovae in distant clusters of galaxies. ESO Messenger 47:46–49

    ADS  Google Scholar 

  • Hicken M, Challis P, Jha S, Kirshner RP, Matheson T, Modjaz M et al (2009) CfA3: 185 type Ia supernova light curves from the CfA. ApJ 700:331–357

    Article  ADS  Google Scholar 

  • Hicken M, Challis P, Kirshner RP, Rest A, Cramer CE, Wood-Vasey WM et al (2012) CfA4: light curves for 94 type Ia supernovae. ApJS 200:12(15pp)

    Article  ADS  Google Scholar 

  • Hoffleit D (1939) Observations of supernovae. Publ Am Phil Soc 81:265–276

    MATH  Google Scholar 

  • Höflich P (1988) Spectral analysis of SN 1987A: the First 7 Months. Proc ASA 7:434–442

    ADS  Google Scholar 

  • Hoyle F, Fowler WA (1960) Nucleosynthesis in supernovae. ApJ 132:565–590

    Article  ADS  Google Scholar 

  • Humphreys EML, Reid MJ, Moran JM, Greenhill LJ, Argon AL (2013) Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. ApJ 775:13(10pp)

    Google Scholar 

  • Inserra C, Smartt SJ (2014) Superluminous supernovae as standardizable candles and high-redshift distance probes. ApJ 796:87(18pp); erratum ApJ 807:112(6pp)

    Google Scholar 

  • Jeffery DJ, Branch D (1990) Analysis of supernova spectra. In: Wheeler JW, Piran T, Weinberg S (eds) Supernovae. World Scientific Publisher, Singapore, pp 149–247

    Google Scholar 

  • Jha S, Kirshner, RP, Challis P, Garnavich PM, Matheson T, Soderberg AM (2006) UBVRI light curves of 44 type Ia supernovae. AJ 131:527–554

    Article  ADS  Google Scholar 

  • Jha S, Riess AG, Kirshner RP (2007) Improved distances to type Ia supernovae with multicolor light-curve shapes: MLCS2k2. ApJ 659:122–148

    Article  ADS  Google Scholar 

  • Jones MI, Hamuy M, Lira P, Maza J, Clocchiatti A, Phillips MM et al (2009) Distance determination to 12 type II supernovae using the expanding photosphere method. ApJ 696:1176–1194

    Article  ADS  Google Scholar 

  • Kirshner RP, Kwan J (1974) Distances to extragalactic supernovae. ApJ 193:27–36

    Article  ADS  Google Scholar 

  • Kowal CT (1968) Absolute magnitudes of supernovae. AJ 73:1021–1024

    Article  ADS  Google Scholar 

  • Koenig T (2005) Fritz Zwicky: novae become supernovae. In: Turatto M, Benetti S, Zampieri L, Shea W (eds) 1604-2004: supernovae as cosmological lighthouses. ASPC, vol 342. Astronomical Society of the Pacific, San Francisco, pp 53–60

    Google Scholar 

  • Krisciunas K, Hastings NC, Loomis K, McMillan R, Rest A, Riess AG, Stubbs C (2000) Uniformity of (V-near-infrared) color evolution of type Ia supernovae and implications for host galaxy extinction determination. ApJ 539:658–674

    Article  ADS  Google Scholar 

  • Krisciunas K, Phillips MM, Suntzeff NB (2004) Hubble diagrams of type Ia supernovae in the near-infrared. ApJ 602:L81–L84

    Article  ADS  Google Scholar 

  • Labhardt L, Binggeli B, Buser R (1998) Supernovae and cosmology. Astronomical Institute of the University of Basel, Basel

    Google Scholar 

  • Law NM, Kulkarni SR, Dekany RG, Ofek EO, Quimby RM, Nugent PE et al (2009) The Palomar Transient Factory: system overview, performance, and first results. PASP 121:1395–1408

    Article  ADS  Google Scholar 

  • Leaman J, Li W, Chornock R, Filippenko AV (2011) Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base. MNRAS 412:1419–1440

    Google Scholar 

  • Leibundgut B (1989) Light curves of supernovae type I. PhD thesis, University of Basel, Basel

    Google Scholar 

  • Leibundgut B (2000) Type Ia supernovae. A&AR 10:179–209

    Article  ADS  Google Scholar 

  • Leibundgut B (2001) Cosmological implications from observations of type Ia supernovae. ARA&A 39:67–98

    Article  ADS  MATH  Google Scholar 

  • Leibundgut B (2008) Supernovae and cosmology. Gen Relativ Gravit 40:221–248

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leibundgut B, Pinto PA (1992) A distance-independent calibration of the luminosity of type Ia supernovae and the Hubble constant. ApJ 401:49–59

    Article  ADS  Google Scholar 

  • Leibundgut B, Tammann GA, Cadonau R, Cerrito D (1991) Supernova studies. VII – an atlas of light curves of supernovae type I. A&AS 89:537–579

    Google Scholar 

  • Leibundgut B, Kirshner RP, Phillips MM, Wells LA, Suntzeff NB, Hamuy M et al (1993) SN 1991bg – a type Ia supernova with a difference. AJ 105:301–313

    Article  ADS  Google Scholar 

  • Leonard DC, Filippenko AV, Gates EL, Li W, Eastman RG, Barth AJ et al (2002) The distance to SN 1999em in NGC 1637 from the expanding photosphere method. PASP 114:35–64; erratum PASP 114:1291–1291

    Google Scholar 

  • Leonard DC, Kanbur SM, Ngeow CC, Tanvir NR (2003) The cepheid distance to NGC 1637: a direct test of the expanding photosphere method distance to SN 1999em. ApJ 594:247–278

    Article  ADS  Google Scholar 

  • Li W, Leaman J, Chornock R, Filippenko AV, Poznanski D, Ganeshalingam M et al (2011) Nearby supernova rates from the Lick Observatory Supernova Search – II. The observed luminosity functions and fractions of supernovae in a complete sample. MNRAS 412:1441–1472

    Google Scholar 

  • Li W, Chornock R, Leaman J, Filippenko AV, Poznanski D, Wang X et al (2011b) Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. MNRAS 412:1473–1507

    Article  ADS  Google Scholar 

  • Lundmark KE (1925) Nebulae, the motions and the distances of spiral. MNRAS 85:865–894

    Article  ADS  Google Scholar 

  • Lundmark KE (1932) The pre-tychonic novae. Lund Obs. Circ. 8:216–218

    Google Scholar 

  • Maguire K, Kotak R, Smartt SJ, Pastorello A, Hamuy M, Bufano F (2010) Type II-P supernovae as standardized candles: improvements using near-infrared data. MNRAS 403:L11–L15

    Article  ADS  Google Scholar 

  • McCray R (1993) Supernova 1987A revisited. ARA&A 31:175–216

    Article  ADS  Google Scholar 

  • Meikle WPS (2000) The absolute infrared magnitudes of type Ia supernovae. MNRAS 314:782–792

    Article  ADS  Google Scholar 

  • Miknaitis G, Pignata G, Rest A, Wood-Vasey WM, Blondin S, Challis P et al (2007) The ESSENCE supernova survey: survey optimization, observations, and supernova photometry. ApJ 666:674–693

    Article  ADS  Google Scholar 

  • Minkowski R (1964) Supernovae and supernova remnants. ARA&A 2:247–266

    Article  ADS  Google Scholar 

  • Nobili S, Amanullah R, Garavini G, Goobar A, Lidman C, Stanishev V et al (2005) Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ∼ .5. A&A 437:789–804

    Article  ADS  Google Scholar 

  • Nørgaard-Nielsen HU, Hansen L, Jørgensen HE, Aragon-Salamanca A, Ellis RS (1989) The discovery of a type Ia supernova at a redshift of 0.31. Nature 339:523–525

    Article  ADS  Google Scholar 

  • Nugent P, Sullivan M, Ellis R, Gal-Yam A, Leonard DC, Howell DA et al (2006) Toward a cosmological Hubble diagram for type II-P supernovae. ApJ 645:841–850

    Article  ADS  Google Scholar 

  • Oke JB, Searle L (1974) The spectra of supernovae. ARA&A 12:315–329

    Article  ADS  Google Scholar 

  • Olivares F, Hamuy M, Pignata G, Maza J, Bersten M, Phillips MM et al (2010) The standardized candle method for type II plateau supernovae. ApJ 715:833–853

    Article  ADS  Google Scholar 

  • Panagia N, Gilmozzi R, Macchetto F, Adorf H-M, Kirshner RP (1991) Properties of the SN 1987A circumstellar ring and the distance to the Large Magellanic Cloud. ApJ 380:L23–L26; erratum ApJ 386:L31–L32

    Google Scholar 

  • Perlmutter S (2003) Supernovae, dark energy, and the accelerating universe. Phys Today 56:53–62

    Article  Google Scholar 

  • Perlmutter S, Schmidt BP (2003) Measuring cosmology with supernovae. In: Weiler K (ed) Supernovae and Gamma-Ray Bursters. Lecture notes in physics, vol 598. Springer, Berlin/New York, pp 195–217

    Chapter  Google Scholar 

  • Perlmutter S, Pennypacker CR, Goldhaber G, Goobar A, Muller RA, Newberg HJM et al (1995) A supernova at z = 0.458 and implications for measuring the cosmological deceleration. ApJ 440:L41–L44

    Article  ADS  Google Scholar 

  • Perlmutter S, Gabi S, Goldhaber G, Goobar A, Groom DE, Hook IM et al (1997) Measurements of the cosmological parameters \(\Omega\) and \(\Lambda\) from the first seven supernovae at z > = 0. 35. ApJ 483:565–581

    Article  ADS  Google Scholar 

  • Phillips MM (1993) The absolute magnitudes of type Ia supernovae. ApJ 413:L105–L108

    Article  ADS  Google Scholar 

  • Phillips MM (2003) Supernovae as cosmological standard candles. In: Alloin D, Gieren W (eds) Stellar candles for the extragalactic distance scale. Lecture notes in physics, vol 635. Springer, Berlin/New York, pp 175–185

    Chapter  Google Scholar 

  • Phillips MM, Phillips AC, Heathcote SR, Blanco VM, Geisler D, Hamilton D et al (1987) The type Ia supernova 1986G in NGC 5128 – optical photometry and spectra. PASP 99:592–605

    Article  ADS  Google Scholar 

  • Phillips MM, Wells LA, Suntzeff NB, Hamuy M, Leibundgut B, Kirshner RP, Foltz CB (1992) SN 1991T – further evidence of the heterogeneous nature of type IA supernovae. AJ 103:1632–1637

    Article  ADS  Google Scholar 

  • Phillips MM, Lira P, Suntzeff NB, Schommer RA, Hamuy M, Maza J (1999) The reddening-free decline rate versus luminosity relationship for type Ia supernovae. AJ 118:1766–1776

    Article  ADS  Google Scholar 

  • Pignata G, Maza J, Antezana R, Cartier R, Folatelli G, Forster F et al (2009) The CHilean Automatic Supernova sEarch (CHASE). In: Giobbi G et al (eds) Probing stellar populations out to the distant universe. AIPC 1111:551–554

    Google Scholar 

  • Pinto PA, Eastman RG (2000) The physics of type Ia supernova light curves. II. Opacity and diffusion. ApJ 530:757–776

    Google Scholar 

  • Polshaw J, Kotak R, Chambers KC, Smartt SJ, Taubenberger S, Kromer M et al (2015) A supernova distance to the anchor galaxy NGC 4258. A&A 580:15(6pp)

    Article  ADS  Google Scholar 

  • Polshaw J, Kotak R, Dessart L, Fraser M, Gal-Yam A, Inserra C et al (2016) LSQ13fn: a type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation. A&A 588:1(17pp)

    Article  Google Scholar 

  • Poznanski D, Butler N, Filippenko AV, Ganeshalingam M, Li W, Bloom JS et al (2009) Improved standardization of type II-P supernovae: application to an expanded sample. ApJ 694:1067–1079

    Article  ADS  Google Scholar 

  • Pskovskii Yu P (1967) The photometric properties of supernovae. Sov Astron 11:63

    ADS  Google Scholar 

  • Pskovskii Yu P (1984) Photometric classification and basic parameters of type I supernovae. Sov Astron 28:658

    ADS  Google Scholar 

  • Rau A, Kulkarni SR, Law NM, Bloom JS, Ciardi D, Djorgivsku GS et al (2009) Exploring the optical transient sky with the Palomar Transient Factory. PASP 121:1334–1351

    Article  ADS  Google Scholar 

  • Rees MJ, Stoneham RJ (eds) Supernovae: a survey of current research. Reidel, Dordrecht

    Google Scholar 

  • Richmond M, Treffers RR, Filippenko AV (1993) The Berkeley automatic imaging telescope. PASP 105:1164–1174

    Article  ADS  Google Scholar 

  • Riess AG (2000) The case for an accelerating universe from supernovae. PASP 112:1284–1299

    Article  ADS  Google Scholar 

  • Riess AG, Press WH, Kirshner RP (1996) A precise distance indicator: type Ia supernova multicolor light-curve shapes. ApJ 473:88–109

    Article  ADS  Google Scholar 

  • Riess AG, Kirshner RP, Schmidt BP, Jha S, Challis P, Garnavich PM et al (1999) BVRI light curves for 22 type Ia supernovae. AJ 117:707–724

    Article  ADS  Google Scholar 

  • Riess AG, Strolger L-G, Tonry J, Casertano S, Ferguson HC, Mobasher B et al (2004) Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. ApJ 607:665–687

    Article  ADS  Google Scholar 

  • Riess AG, Strolger L-G, Casertano S, Ferguson HC, Mobasher B, Gold B et al (2007) New Hubble Space Telescope discoveries of type Ia supernovae at z > = 1: narrowing constraints on the early behavior of dark energy. ApJ 659:98–121

    Article  ADS  Google Scholar 

  • Riess AG, Macri L, Casertano S, Lampeitl H, Ferguson HC, Filippenko AV et al (2011) A 3 % solution: determination of the Hubble constant with the Hubble Space Telescope and wide field camera 3. ApJ 730:119(18pp); erratum ApJ 732:129(1p)

    Google Scholar 

  • Rosino L, di Tullio G (1974) The Asiago supernova search. In: Cosmovici CB (ed) Supernovae and supernova remnants. Astrophys Space Sci Libr 45:19–27

    Article  ADS  Google Scholar 

  • Ruiz-Lapuente P, Canal R, Isern J (1997) Thermonuclear supernovae. Kluwer, Dordrecht

    Book  Google Scholar 

  • Sandage A (1998) SN 1932 GAT: a supernova of unique class. In: Labhardt L, Binggeli B, Buser R (eds) Supernovae and cosmology. Astronomisches Institut der Universität, Basel, pp 201–220

    Google Scholar 

  • Sandage A, Tammann GA (1982) Steps toward the Hubble constant. VIII – the global value. ApJ 256:339–345

    Google Scholar 

  • Sandage A, Tammann GA, Saha A, Reindl B, Macchetto FD, Panagia N (2006) The Hubble constant: a summary of the Hubble Space Telescope program for the luminosity calibration of type Ia supernovae by means of Cepheids. ApJ 522:802–860

    ADS  Google Scholar 

  • Sargent WLW, Searle L, Kowal CT (1974) The Palomar supernova search. In: Cosmovici CB (ed) Supernovae and supernova remnants. Astrophys Space Sci Libr 45:33–49

    Article  ADS  Google Scholar 

  • Scalzo RA, Aldering G, Antilogus P, Aragon C, Bailey S, Baltay C et al (2014) Type Ia supernova bolometric light curves and ejected mass estimates from the nearby supernova factory. MNRAS 440:1498–1518

    Article  ADS  Google Scholar 

  • Schmidt BP, Kirshner RP, Eastman RG (1992) Expanding photospheres of type II supernovae and the extragalactic distance scale. ApJ 395:366–386

    Article  ADS  Google Scholar 

  • Schmidt BP, Kirshner RP, Eastman RG, Hamuy M, Phillips MM, Suntzeff NB et al (1994a) The expanding photosphere method applied to SN 1992am at cz = 14600 km/s. AJ 107:1444–1452

    Article  ADS  Google Scholar 

  • Schmidt BP, Kirshner RP, Eastman RG, Phillips MM, Suntzeff NB, Hamuy M et al (1994b) The distances to five Type II supernovae using the expanding photosphere method, and the value of H. ApJ 432:42–48

    Article  ADS  Google Scholar 

  • Schmidt BP, Suntzeff NB, Phillips MM, Schommer RA, Clocchiatti A, Kirshner RP et al (1998) The high-z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. ApJ 507:46–63

    Article  ADS  Google Scholar 

  • Schmutz W, Abbott DC, Russell RS, Hammann W-R, Wessolowski U (1990) Non-LTE model calculations for SN 1987A and the extragalactic distance scale. ApJ 355:255–270

    Article  ADS  Google Scholar 

  • Schramm DN (1977) Supernovae. Astrophysics and space science library, vol 66. Reidel, Dordrecht

    Google Scholar 

  • Shapley H (1921) The scale of the universe. Bull Natl Res Counc 2:171–193

    Google Scholar 

  • Smartt SJ, Valenti S, Fraser M, Inserra C, Young DR, Sullivan M et al (2015) PESSTO: survey description and products from the first data release by the public ESO spectroscopic survey of transient objects. A&A 579:40(25pp)

    Article  Google Scholar 

  • Sonneborn G, Fransson C, Lundqvist P, Cassatella A, Gilmozzi R, Kirshner RP et al (1997) The evolution of ultraviolet emission lines from circumstellar material surrounding SN 1987A. ApJ 477:848–864

    Article  ADS  Google Scholar 

  • Stritzinger M, Leibundgut B (2005) Lower limits on the Hubble constant from models of type Ia supernovae. A&A 431:423–431

    Article  ADS  Google Scholar 

  • Stritzinger M, Leibundgut B, Walch S, Contardo G (2006) Constraints on the progenitor systems of type Ia supernovae. A&A 450:241–251

    Article  ADS  Google Scholar 

  • Stritzinger M, Phillips MM, Boldt LN, Burns C, Campillay A, Contreras C et al (2011) The Carnegie supernova project: second photometry data release of low-redshift type Ia supernovae. AJ 142:156(14pp)

    Article  ADS  Google Scholar 

  • Takáts K, Vinkó J (2012) Measuring expansion velocities in Type II-P supernovae. MNRAS 419:2783–2796

    Article  ADS  Google Scholar 

  • Tammann GA (1978) Some statistical properties of supernovae. Mem Soc Astron It 49:315–329

    ADS  Google Scholar 

  • Tammann GA (1979) Cosmology with the space telescope. In: Macchetto FD, Pacini F, Tarenghi M (eds) Astronomical uses of the space telescope. ESO proceedings, Garching, pp 329–341

    Google Scholar 

  • Tammann GA, Leibundgut B (1990) Supernova studies. IV – the global value of H from supernovae Ia and the peculiar motion of field galaxies. A&A 236:9–14

    Google Scholar 

  • Tonry JL, Stubbs CW, Kilic M, Flewelling HA, Deacon NR, Chornock R et al (2012) First results from Pan-STARRS1: faint, high proper motion white dwarfs in the medium-deep fields. ApJ 745:42(13pp)

    Article  ADS  Google Scholar 

  • Trimble V (1982) Supernovae. Part I: the events. Rev Mod Phys 54:1183–1224

    Article  ADS  Google Scholar 

  • Trimble V (1995) The 1920 Shapley-Curtis discussion: background, issues, and aftermath. PASP 107:1133–1144

    Article  ADS  Google Scholar 

  • Turatto M, Benetti S, Zampieri S, Shea W (2005) 1604–2004: supernovae as cosmological lighthouses. ASPC, vol 342. Astronomical Society of the Pacific, San Francisco

    Google Scholar 

  • Wagoner RV (1977) Determining q from supernovae. ApJ 214:L5–L7

    Article  ADS  Google Scholar 

  • Wagoner RV (1979) Determining H and q from supernova atmospheres. Comments Astrophys 8:121–131

    ADS  Google Scholar 

  • Wagoner RV (1981) Effects of scattering on continuous radiation from supernovae and determination of their distances. ApJ 250:L65–L69

    Article  ADS  Google Scholar 

  • Weiler K (2003) Supernovae and gamma-ray bursts. Lecture notes in physics, vol 598. Springer, Berlin/New York

    Google Scholar 

  • Wesselink AJ (1946) The observations of brightness, colour and radial velocity of δ Cephei and the pulsation hypothesis. Bull Astron Inst Neth 10:91–98

    ADS  Google Scholar 

  • Wheeler JC (1980) Texas workshop on type I supernovae. University of Texas Press, Austin

    Google Scholar 

  • Wild P (1974) The supernovae search at Zimmerwald. In: Cosmovici CB (ed) Supernovae and supernova remnants. Astrophys Space Sci Libr 45:29–32

    Article  ADS  Google Scholar 

  • Wood-Vasey WM, Aldering G, Lee BC, Loken S, Nugent P, Perlmutter S et al (2004) The nearby supernova factory. New Astron Rev 48:637–640

    Article  ADS  Google Scholar 

  • Wood-Vasey WM, Miknaitis G, Stubbs CW, Jha S, Riess AG, Garnavich PM et al (2007) Observational constraints on the nature of dark energy: first cosmological results from the ESSENCE supernova survey. ApJ 666:694–715

    Article  ADS  Google Scholar 

  • Zwicky F (1965) Supernovae. In: Stellar structure, stars and stellar systems, vol VIII. The Chicago University Press, Chicago, pp 367–424

    Google Scholar 

Download references

Acknowledgements

This research was supported by the DFG Cluster of Excellence “Origin and Structure of the Universe.” I would also like to acknowledge the support of the Deutsche Forschungsgesellschaft through the TransRegio project TRR33 “The Dark Universe.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Leibundgut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Leibundgut, B. (2017). History of Supernovae as Distance Indicators. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_99-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_99-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    History of Supernovae as Distance Indicators
    Published:
    25 January 2017

    DOI: https://doi.org/10.1007/978-3-319-20794-0_99-2

  2. Original

    History of Supernovae as Distance Indicators
    Published:
    11 November 2016

    DOI: https://doi.org/10.1007/978-3-319-20794-0_99-1