Skip to main content

Advertisement

Log in

Optimization of Process Flow Diagrams for Processing of Mineral Wastes

  • Published:
Metallurgist Aims and scope

This paper describes an algorithm for optimizing process flow diagrams, as well as the order in which the parameters of mineral waste recycling equipment should be optimized. We developed a flow chart for this waste-recycling process-train design analysis algorithm. When comparing different mineral-waste recycling process train options, it is best to use an generalized specific action criterion based on the total power consumption of the machinery, the total weight of equipment, and the average cycle time per unit volume (or weight) of recycled end product. We have developed an engineering technique for evaluating equipment systems, which enables selection of the most efficient mineral waste recycling equipment for production of end products of a given quality under certain specific production conditions, subject to the constraint that unit cost be minimized. A sample comparison is made to determine the efficiency of various types of equipment when producing finely-ground limestone from recycled limestone waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Yu. V. Gamin, B. A. Romantsev, A. N. Pashkov, P. V. Patrin, I. A. Bystrov, A. V. Fomin, and M. V. Kadach, “Obtaining hollow semifinished products based on copper alloys for electrical purposes by means of screw rolling,” Russ. J. Non-Ferrous Metals, 61, 162–171 (2020); https://doi.org/10.3103/S1067821220020054.

    Article  Google Scholar 

  2. I. N. Karelin, V. D. Sedykh, and L. V. Sedykh, “Modernization of a sharply bending elbow in a steel pipeline,” Chem. Pet. Eng., 49, 351–354 (2013); https://doi.org/10.1007/S10556-013-9754-0.

    Article  Google Scholar 

  3. V. A. Nikolaev , A. D. Rusakov , and N. A. Chichenev, “Prediction of the hardness of rolls of multiroll mills,” Steel in Translation, 26, No. 9, 54–56 (1996); English translation: Stal’, No. 9, 58–60 (1996).

  4. A. J. Durelli, N. A. Chichenev, and J. A. Clark, “Developments in the optical spatial filtering of superposed crossed gratings,” Exp. Mech., 12, 496–501 (1972); https://doi.org/10.1007/BF02320745.

    Article  Google Scholar 

  5. O. A. Kobelev, A. V. Zinov’ev, and M. A. Tsepin, “Effective production of large pipe blanks,” Steel in Translation, 39, 501–505 (2009) ; English translation: Stal’, No. 6, 48–52 (2009); https://doi.org/10.3103/S0967091209060163.

  6. O. A. Kobelev and V. A. Tyurin, “Production of large plates,” Steel in Translation, 37, 727–729 (2007); English translation: Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 9, 9–11 (2007); https://doi.org/10.3103/S096709120709001.

  7. N. A. Chichenev, S. M. Gorbatyuk, M. G. Naumova, and I. G. Morozova, “Using the similarity theory for description of laser hardening processes,” CIS Iron Steel Rev., 19, 44–47 (2020); https://doi.org/10.17580/cisisr.2020.01.09.

  8. M. G. Naumova, I. G. Morozova, and P. V. Borisov, “Study of metal surface with color image obtained with laser marking,” Solid State Phenom., 299, 943–948 (2020); https://doi.org/10.4028/www.scientific.net/SSP.299.943.

    Article  Google Scholar 

  9. V. E. Kondratenko, V. V. Devyatiarova, S. V. Albul, and L. M. Valeeva, “Method of calculating volumetric scaffold of monolithic slab formwork,” IOP Conf. Ser.: Mater. Sci. Eng., 971(5), 052036; https://doi.org/10.1088/1757-899X/971/5/052036.

  10. A. M. Keropyan, D. A. Kuziev, and A. E. Krivenko, “Process research of wheel-rail mining machines traction,” in: A. Radionov, O. Kravchenko, V. Guzeev, and Y. Rozhdestvenskiy (editors), Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019, Sochi, Russia, 2019), Cham Springer International, Cham, Switzerland, Vol. 2 (2020), pp. 703–709; https://doi.org/10.1007/978-3-030-22063-1_75.

  11. K. H. Trubetskoi and A. E. Shapar’, Low-Waste and Resource-Conserving Technology for Field Development [in Russian], Nedra, Moscow (2003).

  12. B. E. Gorskii, Dynamic Enhancement of Mechanical Systems [in Russian], Tekhnika, Kiev (1987).

  13. D. Kouziyev, A. Krivenko, D. Chezganova, and B. Valeriy, “Sensing of dynamic loads in the open-cast mine combine,” E3S Web Conf., 105, 03014 (2019); https://doi.org/10.1051/e3sconf/201910503014.

  14. K. A. Razumov and V. A. Perov, Design of Beneficiation Plants [in Russian], Nedra, Moscow (1982), [Proyectos de Fábricas de Preparación de Minerales, Mir, Moscú (1985)].

  15. A. D. Bardovskii, Development of Classification and Grinding Equipment and Assessment Methods Recycling Waste from Non-Mineral Open-Cast Mines [in Russian], Dissertation Submitted for Doctorate of Engineering Sciences, MGGU, Moscow (2000).

  16. L. Jiawen, S. Timushev, D. Klimenko, and A. Krivenko, “Modeling pressure pulsation fields in a screw centrifugal pump,” in: Proceedings of the 26th International Congr. on Sound and Vibration, ICSV 2019, Vol. 1 (2019), pp. 804–811.

  17. V. E. Kondratenko, V. V. Devyatiarova, S. V. Albul, and D. S. Kartyshev, “Improving methodology for calculating scaffolding formwork of monolithic slabs in building constructions,” IOP Conf. Ser.: Mater. Sci. Eng., 971(5), 052037 (2020); DOI: https://doi.org/10.1088/1757-899X/971/5/052037.

  18. G. P. Zhigulev, M. N. Skripalenko, V. A. Fadeev, and M. M. Skripalenko, “Modeling of deformation zone during plate stock molding in three-roll plate bending machine,” Metallurgist, 64, 348–355 (2020); DOI:10.1007/s11015-020-01002-y.[Metallurg 64, No. 4, 66–70 (2020)] [see Metallurgist, 64, 848 (2020) for correction to second author name; https://doi.org/10.1007/s11015-020-01062-0].

  19. R. L. Shatalov and M. A. Kulikov, “Influence of outer parts of a strip on the deformation and force parameters of thin-sheet rolling,” Metallurgist, 64, 687–698 (2020); English translation: Metallurg, 64, No. 7, 77–84 (2020); https://doi.org/10.1007/s11015-020-01045-1.

  20. S. A. Snitko, A. V. Yakovchenko, V. V. Pilipenko, and N. I. Ivleva, “Modeling of ring billet rolling on a radial-axial ring-rolling mill,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 63, No. 8, 665–673 (2020); https://doi.org/10.17073/0368-0797-2020-8-665-673.

  21. A. G. Nikitin, A. V. Abramov, I. A. Bazhenov, “Jaw crushers equipped with elastic pneumatic elements in joints of kinematic pairs,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 63, No. 2, 166–168 (2020); https://doi.org/10.17073/0368-0797-2020-2-166-168.

  22. S. P. Eron’ko, E. V. Oshovskaya, M. V. Yushchenko, and B. I. Starodubtsev, “Screw systems for supplying slag-forming mixture to the molds of continuous-casting machines,” Steel in Translation, 44, 640–645 (2014); English translation: Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 9, 33–40 (2014); https://doi.org/10.3103/S0967091214090071.

  23. V. Kukhar, O. Kurpe, E. Klimov, E. Balalayeva, and V. Dragobetskii, “Improvement of the method for calculation of the metal temperature loss on a Coilbox unit at the rolling on hot strip mills,” International Journal of Engineering & Technology (UAE), 7, 35–39 (2018); https://doi.org/10.14419/ijet.v7i4.3.19548.

  24. V. Artiukh, V. Mazur, and E. Pokrovskaya, “Influence of strip bite time in work rolls gap on dynamic loads in strip rolling stands,” MATEC Web of Conferences, Vol. 86, No. 01030 (2016); https://doi.org/10.1051/matecconf/20168601030.

  25. V. Dragobetskii, E. Naumova, A. Shapoval, S. Shlyk, and D. Moloshtan, “Improving the operational reliability of stamped parts of electrical engineering machines and electrical products,” in: Proceedings of the 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES) (Kremenchuk, Ukraine, 23–25 September 2019), IEEE, Piscataway, NJ, pp. 506–509; https://doi.org/10.1109/MEES.2019.8896532.

  26. A. Y. Albagachiev, A. Keropyan, A. Gerasimova, and O. Kobelev, “Determination of rational friction temperature in lengthwise rolling,” CIS Iron and Steel Review, 19, 33–36 (2020); https://doi.org/10.17580/cisisr.2020.01.07.

  27. A. Ya. Boduen, G. V. Petrov, A. Yu. Spynu, and I. I. Mardar’, “Incidental extraction of rare microelements during the systematic processing of sulfide copper ores,” Metallurgist, 58, 66–68 (2014); English translation: Metallurg, No. 1, 83–85 (2014).

  28. I. I. Valiullin, O. A. Kobelev, M. G. Naumova, I. G. Morozova, A. N. Pashkov, V. A. Nagovitsyn, and K. V. Goloshchapov, “Application of a discrete double-row scraper cleaner as an efficient procedure of cleaning of belt conveyors aimed at transporting bulk materials,” Metallurgist, 64, 1340–1346 (2021); English translation: Metallurg, No. 12, 89–93 (2020).

  29. Jing Chenggui, Wang Shuolun, O. Yu. Palkina, T. D. Poddubnaya, and V. V. Ivanisov, “Importance of mineralogical researches for the development and improvement of ore processing technology (with China deposits as an example),” Mineral. Zh., 41, 31–39 (2019); https://doi.org/10.15407/mineraljournal.41.04.031.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bardovsky.

Additional information

Translated from Metallurg, Vol. 65, No. 4, pp. 83–89, April, 2021. Russian DOI: 10.52351/00260827_2021_04_83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardovsky, A.D., Gorbatyuk, S.M., Albul, S.V. et al. Optimization of Process Flow Diagrams for Processing of Mineral Wastes. Metallurgist 65, 465–472 (2021). https://doi.org/10.1007/s11015-021-01181-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-021-01181-2

Keywords

Navigation