Skip to main content
Log in

Experimental investigation on the effects of swirl in the initial region of isothermal free swirling jets by stereoscopic PIV

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Swirling jets are characterized by having a velocity component in the azimuthal direction and used in many technical applications e.g. gas turbines, vortex burners, furnaces, and jet engines. In this paper, the near exit region of unconfined isothermal swirling jets has been investigated by stereoscopic particle image velocimetry with a focus on the effect of swirl intensity on the formation of recirculation zone, vortex breakdown, and the occurrence of the precessing vortex core. Stereoscopic particle image velocimetry measurements were carried out on an axial plus tangential entry swirl burner with Reynolds number of 21,800 and five different geometric swirl numbers (Sg). The appearance of intermittent vortex breakdown is revealed by the instantaneous flow field at Sg = 1.15 before it appears in the time-averaged flow field at Sg = 2.6. Results show that the swirl intensity increases the backflow rate in the recirculation zone and jet spreads almost linearly with a higher spread rate as compared to non-swirling flow. The frequency characteristics have been measured with a capacitive microphone for various Reynolds numbers and geometric swirl numbers which indicates the periodic oscillation presence related to the existence of precessing vortex core. The Strouhal number associated with the frequency of the precessing vortex core vary monotonically with swirl intensity after the occurrence of vortex breakdown. The study also revealed the presence of coherent vortical structures in the high turbulent kinetic energy region (z ≅ 0.02D–1.5D).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gupta AK, Lilley DGSN (1984) Swirl flows. Abacus Press, London

    Google Scholar 

  2. Boguslawski A, Wawrzak K (2020) Absolute instability of an annular jet: local stability analysis. Meccanica 55:2179–2198. https://doi.org/10.1007/s11012-020-01244-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Hashim WM, Hoshi HA, Al-Salihi HA (2019) Enhancement the performance of swirl heat exchanger by using vortices and NanoAluminume. Heliyon 5:e02268. https://doi.org/10.1016/J.HELIYON.2019.E02268

    Article  Google Scholar 

  4. Cozzi F, Coghe A, Sharma R (2018) Analysis of local entrainment rate in the initial region of isothermal free swirling jets by Stereo PIV. Exp Therm Fluid Sci 94:281–294. https://doi.org/10.1016/j.expthermflusci.2018.01.013

    Article  Google Scholar 

  5. Litvinov IV, Suslov DA, Gorelikov EU, Shtork SI (2021) Swirl number and nozzle confinement effects in a flat-vane axial swirler. Int J Heat Fluid Flow 91:108812. https://doi.org/10.1016/j.ijheatfluidflow.2021.108812

    Article  Google Scholar 

  6. Park SH, Shin HD (1993) Measurements of entrainment characteristics of swirling jets. Int J Heat Mass Transf 36:4009–4018. https://doi.org/10.1016/0017-9310(93)90151-U

    Article  Google Scholar 

  7. Panda J, McLaughlin DK (1994) Experiments on the instabilities of a swirling jet. Phys Fluids 6:263–276. https://doi.org/10.1063/1.868074

    Article  Google Scholar 

  8. Billant P, Chomaz JM, Huerre P (1998) Experimental study of vortex breakdown in swirling jets. J Fluid Mech 376:183–219. https://doi.org/10.1017/S0022112098002870

    Article  MathSciNet  MATH  Google Scholar 

  9. Chigier NA, Chervinsky A (1964) Experimental investigation of swirling vortex motion in jets. J Appl Mech Trans ASME 34:443–451. https://doi.org/10.1115/1.3607703

    Article  Google Scholar 

  10. Sarpkaya T (1971) On stationary and travelling vortex breakdowns. J Fluid Mech 45:545–559. https://doi.org/10.1017/S0022112071000181

    Article  Google Scholar 

  11. Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159. https://doi.org/10.1017/S0022112004002629

    Article  MATH  Google Scholar 

  12. Oberleithner K, Paschereit CO, Seele R, Wygnanski I (2012) Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA J 50:1437–1452. https://doi.org/10.2514/1.J050642

    Article  Google Scholar 

  13. Santhosh R, Miglani A, Basua S (2014) Transition in vortex breakdown modes in a coaxial isothermal unconfined swirling jet. Phys Fluids. https://doi.org/10.1063/1.4870016

    Article  Google Scholar 

  14. Cozzi F, Coghe A (2012) Effect of air staging on a coaxial swirled natural gas flame. Exp Therm Fluid Sci 43:32–39. https://doi.org/10.1016/j.expthermflusci.2012.04.002

    Article  Google Scholar 

  15. Olivani A, Solero G, Cozzi F, Coghe A (2007) Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames. Exp Therm Fluid Sci 31:427–436. https://doi.org/10.1016/j.expthermflusci.2006.05.003

    Article  Google Scholar 

  16. Harvey JK (1962) Some observations of the vortex breakdown phenomenon. J Fluid Mech 14:585–592. https://doi.org/10.1017/S0022112062001470

    Article  MATH  Google Scholar 

  17. Farokhi S, Taghavi RRE (1989) Effect of initial swirl distribution on the evolution of a turbulent jet. AIAA J 27:700–706

    Article  Google Scholar 

  18. Toh IK, Honnery D, Soria J (2010) Axial plus tangential entry swirling jet. Exp Fluids 48:309–325. https://doi.org/10.1007/s00348-009-0734-2

    Article  Google Scholar 

  19. Rukes L, Sieber M, Paschereit CO, Oberleithner K (2015) Effect of initial vortex core size on the coherent structures in the swirling jet near field. Exp Fluids. https://doi.org/10.1007/s00348-015-2066-8

    Article  MATH  Google Scholar 

  20. Percin M, Vanierschot M, Van Oudheusden BW (2017) Analysis of the pressure fields in a swirling annular jet flow. Exp Fluids 58:1–13. https://doi.org/10.1007/s00348-017-2446-3

    Article  Google Scholar 

  21. Vanierschot M, Percin M, Van Oudheusden BW (2018) Double helix vortex breakdown in a turbulent swirling annular jet flow. Phys Rev Fluids. https://doi.org/10.1103/PhysRevFluids.3.034703

    Article  MATH  Google Scholar 

  22. Ianiro A, Lynch KP, Violato D et al (2018) Three-dimensional organization and dynamics of vortices in multichannel swirling jets. J Fluid Mech 843:180–210. https://doi.org/10.1017/jfm.2018.140

    Article  Google Scholar 

  23. Cozzi F, Sharma R, Solero G (2019) Analysis of coherent structures in the near-field region of an isothermal free swirling jet after vortex breakdown. Exp Therm Fluid Sci 109:67–74. https://doi.org/10.1016/j.expthermflusci.2019.109860

    Article  Google Scholar 

  24. Shen Y, Ghulam M, Zhang K et al (2020) Vortex breakdown of the swirling flow in a Lean Direct Injection burner. Phys Fluids. https://doi.org/10.1063/5.0028838

    Article  Google Scholar 

  25. Barakat S, Wang H, Jin T et al (2021) Isothermal swirling flow characteristics and pressure drop analysis of a novel double swirl burner. AIP Adv. https://doi.org/10.1063/5.0041361

    Article  Google Scholar 

  26. Benjamin TB (1962) Theory of the vortex breakdown phenomenon. J Fluid Mech 14:593–629. https://doi.org/10.1017/S0022112062001482

    Article  MathSciNet  MATH  Google Scholar 

  27. Froud D, O’Doherty T, Syred N (1995) Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust Flame 100:2–11. https://doi.org/10.1016/0010-2180(94)00167-Q

    Article  Google Scholar 

  28. Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32:93–161. https://doi.org/10.1016/j.pecs.2005.10.002

    Article  Google Scholar 

  29. Litvinov IV, Sharaborin DK, Shtork SI (2019) Reconstructing the structural parameters of a precessing vortex by SPIV and acoustic sensors. Exp Fluids 60:1–18. https://doi.org/10.1007/s00348-019-2783-5

    Article  Google Scholar 

  30. Martinelli F, Cozzi F, Coghe A (2012) Phase-locked analysis of velocity fluctuations in a turbulent free swirling jet after vortex breakdown. Exp Fluids 53:437–449. https://doi.org/10.1007/s00348-012-1296-2

    Article  Google Scholar 

  31. Chanaud RC (1965) Observations of oscillatory motion in certain swirling flows. J Fluid Mech 21:111–127. https://doi.org/10.1017/S0022112065000083

    Article  Google Scholar 

  32. Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27:431–481. https://doi.org/10.1016/S0360-1285(00)00022-8

    Article  Google Scholar 

  33. Cassidy JJ, Falvey HT (1970) Observations of unsteady flow arising after vortex breakdown. J Fluid Mech 41:727–736. https://doi.org/10.1017/S0022112070000873

    Article  Google Scholar 

  34. Fernandes EC, Heitor MV, Shtork SI (2006) An analysis of unsteady highly turbulent swirling flow in a model vortex combustor. Exp Fluids 40:177–187. https://doi.org/10.1007/s00348-005-0034-4

    Article  Google Scholar 

  35. Dellenback PA, Metzger DE, Neitzel GP (1988) Measurements in turbulent swirling flow through an abrupt axisymmetric expansion. AIAA J 26:669–681. https://doi.org/10.2514/3.9952

    Article  Google Scholar 

  36. Guo B, Langrish TAG, Fletcher DF (2001) Simulation of turbulent swirl flow in an axisymmetric sudden expansion. AIAA J 39:96–102. https://doi.org/10.2514/2.1275

    Article  Google Scholar 

  37. Sharma R (2017) Experimental study of unconfined and confined isothermal swirling jets. PhD thesis, Politecnico di Milano, Italy. http://hdl.handle.net/10589/132686

  38. Sharma R, Cozzi F (2017) Experimental study of unconfined and confined isothermal swirling jets. Int J Mech Mechatron Eng 11:386–396. https://doi.org/10.5281/zenodo.1128929

    Article  Google Scholar 

  39. Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116. https://doi.org/10.1007/s003480000143

    Article  Google Scholar 

  40. Panco RB, DeMauro EP (2020) Measurements of a Mach 3.4 turbulent boundary layer using stereoscopic particle image velocimetry. Exp Fluids 61:1–12. https://doi.org/10.1007/s00348-020-2941-9

    Article  Google Scholar 

  41. Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454. https://doi.org/10.1088/0957-0233/8/12/008

    Article  Google Scholar 

  42. Stafford J, Walsh E, Egan V (2012) A statistical analysis for time-averaged turbulent and fluctuating flow fields using Particle Image Velocimetry. Flow Meas Instrum 26:1–9. https://doi.org/10.1016/j.flowmeasinst.2012.04.013

    Article  Google Scholar 

  43. Willert C (1997) Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas Sci Technol 8:1465–1479

    Article  Google Scholar 

  44. Bhattacharya S, Charonko JJ, Vlachos PP (2016) Stereo-particle image velocimetry uncertainty quantification. Meas Sci Technol 28(1):015301

    Article  Google Scholar 

  45. Andrea S (2019) Uncertainty quantification in particle image velocimetry. Meas Sci Technol 30(9):092001

    Article  Google Scholar 

  46. Vignat G, Durox D, Candel S (2022) The suitability of different swirl number definitions for describing swirl flows: accurate, common and (over-) simplified formulations. Prog Energy Combust Sci 89:100969. https://doi.org/10.1016/J.PECS.2021.100969

    Article  Google Scholar 

  47. Örlü R, Alfredsson PH (2008) An experimental study of the near-field mixing characteristics of a swirling jet. Flow Turbul Combust 80:323–350. https://doi.org/10.1007/s10494-007-9126-y

    Article  Google Scholar 

  48. Feikema D, Chen RH, Driscoll JF (1990) Enhancement of flame blowout limits by the use of swirl. Combust Flame 80:183–195. https://doi.org/10.1016/0010-2180(90)90126-C

    Article  Google Scholar 

  49. Claypole T, Syred N (1981) The effect of swirl burner aerodynamics on NOx formation. In: Eighteenth symposium (international) on combustion, The Combustion Institute. pp 81–89

  50. Rajaratnam N (1976) Turbulent jets volume 5 of developments in water science. Elsevier Scientific Publishing Co, New York

    Google Scholar 

  51. John G, Proakis D, Manolakis G (1996) Digital signal processing: principles, algorithms, and applications, 3rd edn. Prentice-Hall, Hoboken

    Google Scholar 

  52. Shtork SI, Vieira NF, Fernandes EC (2008) On the identification of helical instabilities in a reacting swirling flow. Fuel 87:2314–2321. https://doi.org/10.1016/j.fuel.2007.10.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge support from Politecnico di Milano and Heritage—Erasmus Mundus Action 2 partnership Europe/India through Research fellowship provided for Rohit Sharma. The authors would like to thank Prof. Aldo Coghe for the fruitful discussion and invaluable assistance in carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Fig. 11

Fig. 11
figure 11

Contour plots of mean tangential velocity, W/Ubulk in a longitudinal plane for a Sg = 0, b Sg = 1.15, c Sg = 1.8, d Sg = 2.6, e Sg = 4.6, f Sg = 7.2 for Re = 21,800

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Cozzi, F. Experimental investigation on the effects of swirl in the initial region of isothermal free swirling jets by stereoscopic PIV. Meccanica 58, 1615–1631 (2023). https://doi.org/10.1007/s11012-023-01695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01695-w

Keywords

Navigation