Skip to main content
Log in

Multimodal vibration suppression of nonlinear Euler–Bernoulli beam by multiple time-delayed vibration absorbers

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

For a nonlinear beam under broadband excitations, the multimodal nonlinear resonance phenomena will be induced. To suppress the multimodal nonlinear resonances, the multiple time-delayed vibration absorbers (TDVAs) are introduced. The optimal time-delayed parameters of the TDVAs are determined by the proposed multimodal equal-peak principle consisting of three design criteria. In the proposed three criteria, the stability criterion ensures the stability of the equilibrium state for the system; the extremes equal criterion figures out the time-delayed parameters to realize the equal resonance peaks around each concerned mode; the minimum peak criterion can obtain the optimal time-delayed parameters for the minimum resonance peaks. The results show that the TDVAs designed by the proposed multimodal equal-peak principle consisting of three criteria could simultaneously suppress the resonance peaks of the beam around multiple modes to the equal and minimum values. Besides, the equal resonance peaks are much lower than the absorbers without time-delayed feedback under the same mass constraint. The proposed TDVAs and the multimodal equal-peak principle have wide application prospects in suppressing the multimodal vibrations for nonlinear continuous systems with broad frequency band and large amplitudes excitation in the fields of civil engineering and aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gwon SG, Choi DH (2017) Improved Continuum Model for Free Vibration Analysis of Suspension Bridges. J Eng Mech 143(7):04017038

    Article  Google Scholar 

  2. Zhang W (2018) Vibration avoidance method for flexible robotic arm manipulation. J Franklin Inst 355(9):3968–3989

    Article  MathSciNet  Google Scholar 

  3. Basta EE, Ghommem M, Emam SA (2020) Vibration suppression and optimization of conserved-mass metamaterial beam. Int J Non-Linear Mech 120:103360

  4. Parseh M, Dardel M, Ghasemi MH, Pashaei MH (2016) Steady state dynamics of a non-linear beam coupled to a non-linear energy sink. Int J Non-Linear Mech 79:48–65

    Article  Google Scholar 

  5. Li H, Laima S, Zhang Q, Li N, Liu Z (2014) Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge. J Wind Eng Ind Aerodyn 124:54–67

    Article  Google Scholar 

  6. Frandsen JB (2001) Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge. J Wind Eng Ind Aerodyn 89(1):95–129

    Article  Google Scholar 

  7. Larsen A, Esdahl S, Andersen JE, Vejrum T (2000) Storebælt suspension bridge-vortex shedding excitation and mitigation by guide vanes. J Wind Eng Ind Aerodyn 88(2–3):283–296

    Article  Google Scholar 

  8. Wallace AAC (1985) Wind influence on Kessock bridge. Eng Struct 7(1):18–22

    Article  Google Scholar 

  9. Fujino Y, Yoshida Y (2002) Wind-Induced Vibration and Control of Trans-Tokyo Bay Crossing Bridge. J Struct Eng 128(8):1012–1025

    Article  Google Scholar 

  10. Frahm H (1909) Device for damping vibrations of bodies. USA Patent

  11. Hartog JPD (1934) Mechanical Vibrations, vol 179. McGraw-Hill, New York

    MATH  Google Scholar 

  12. Ormondroyd J, Den Hartog JP (1928) The theory of the dynamic vibration absorber. Trans ASME, J Appl Mech 50(7):9–22

    Google Scholar 

  13. Deraemaeker A, Soltani P (2016) A short note on equal peak design for the pendulum tuned mass dampers. Proceedings of the Institution of Mechanical Engineers, Part K: J Multi-body Dyn 231(1):285–291

    Google Scholar 

  14. Cheng Z, Palermo A, Shi Z, Marzani A (2020) Enhanced tuned mass damper using an inertial amplification mechanism. J Sound Vib 475:115267

  15. Asami T, Nishihara O (2003) Closed-form exact solution to H∞ optimization of dynamic vibration absorbers (application to different transfer functions and damping systems). J Vib Acoust 125(3):398–405

    Article  Google Scholar 

  16. Hua Y, Wong W, Cheng L (2018) Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J Sound Vib 421:111–131

    Article  Google Scholar 

  17. Shen Y, Xing Z, Yang S, Sun J (2019) Parameters optimization for a novel dynamic vibration absorber. Mech Syst Signal Process 133:106282

  18. Habib G, Detroux T, Viguié R, Kerschen G (2015) Nonlinear generalization of Den Hartog's equal-peak method. Mech Syst Signal Process 52–53:17–28

    Article  Google Scholar 

  19. Habib G, Kerschen G (2016) A principle of similarity for nonlinear vibration absorbers. Physica D 332:1–8

    Article  MathSciNet  Google Scholar 

  20. Detroux T, Habib G, Masset L, Kerschen G (2015) Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber. Mech Syst Signal Process s 60–61:799–809

    Article  Google Scholar 

  21. Sun X, Xu J, Wang F, Cheng L (2019) Design and experiment of nonlinear absorber for equal-peak and de-nonlinearity. J Sound Vib 449:274–299

    Article  Google Scholar 

  22. Zhu X, Chen Z, Jiao Y (2018) Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates. J Low Freq Noise, Vib Act Control 37(4):1188–1200

    Article  Google Scholar 

  23. Raze G, Kerschen G (2019) All-equal-peak design of multiple tuned mass dampers using norm-homotopy optimization.

  24. Raze G, Kerschen G (2020) Multimodal vibration damping of nonlinear structures using multiple nonlinear absorbers. Inter J Non-Linear Mech 119:103308

  25. Kitis L, Wang BP, Pilkey WD (1983) Vibration reduction over a frequency range. J Sound Vib 89(4):559–569

    Article  Google Scholar 

  26. Asami T, Baz AM (2001) Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems. Trans Japan Soc Mech Eng 67(655):597–603

    Article  Google Scholar 

  27. Olgac N, Holm-Hansen BT (1994) A novel active vibration absorption technique: delayed resonator. J Sound Vib 176(1):93–104

    Article  Google Scholar 

  28. Hosek M, Elmali H, Olgac N (1997) A tunable torsional vibration absorber: the centrifugal delayed resonator. J Sound Vib 205(2):151–165

    Article  Google Scholar 

  29. Zhao Y-Y, Xu J (2007) Effects of delayed feedback control on nonlinear vibration absorber system. J Sound Vib 308(1):212–230

    Article  Google Scholar 

  30. Xu J, Sun Y (2015) Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mech Sin 31(2):229–247

    Article  MathSciNet  Google Scholar 

  31. Sun Y, Xu J (2015) Experiments and analysis for a controlled mechanical absorber considering delay effect. J Sound Vib 339:25–37

    Article  Google Scholar 

  32. Olgac N, Elmali H, Vijayan S (1996) Introduction to the dual frequency fixed delayed resonator. J Sound Vib 189(3):355–367

    Article  Google Scholar 

  33. Olgac N, Jalili N (1998) Modal analysis of flexible beams with delayed resonator vibration absorber: theory and experiments. J Sound Vib 218(2):307–331

    Article  Google Scholar 

  34. Jalili N, Olgac N Optimum delayed feedback vibration absorber for MDOF mechanical structures. In: Proceedings of the 37th IEEE Conference on Decision and Control Tampa, Florida USA, 1999. pp 4734–4739 vol.4734

  35. Wang F, Xu J (2019) Parameter design for a vibration absorber with time-delayed feedback control. Acta Mechanica Sinica

  36. Wang, F., et al., Time-delayed Feedback Control Design and its Application for Vibration Absorption. IEEE Trans Ind Electron. 2020: p. 1–1.

  37. Wang F, Sun X, Meng H, Xu J (2020) Time-delayed Feedback Control Design and its Application for Vibration Absorption. IEEE Trans Ind Electron PP (99):1–1

  38. Vyhlídal T, Pilbauer D, Alikoç B, Michiels W (2019) Analysis and design aspects of delayed resonator absorber with position, velocity or acceleration feedback. J Sound Vib. 459:114831

  39. Meng H, Sun X, Xu J, Wang F (2020) The generalization of equal-peak method for delay-coupled nonlinear system. Physica D: Nonlinear Phenomena:132340

  40. Casalotti A, El-Borgi S, Lacarbonara W (2018) Metamaterial beam with embedded nonlinear vibration absorbers. Int J Non-Linear Mech 98:32–42

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support from the National Natural Science Foundation of China under Grants No. 11772229, 11972254 and 11932015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The Galerkin truncation is adopted to discretize the partial differential equation Eq. (1), the deflection of the beam can be represented by a finite sum as

$$w\left( {s,t} \right) \approx \sum\limits_{{p = 1}}^{P} {\phi _{p} \left( s \right)q_{p} \left( t \right)} ,$$
(20)

where \(P\) is the number of modes retained. \(q_{p} \left( t \right)\) and \(\phi _{p} \left( s \right)\) are the pth generalized coordinate and mode shape function. For hinged-hinged supported beam, the mode shape function is given as follow

$$\phi _{p} \left( s \right) = \sqrt 2 \sin \left( {\frac{{p\pi s}}{l}} \right).$$
(21)

The mode shape function satisfies the orthogonality conditions as

$$\int_{0}^{l} {\rho A\phi _{{p_{1} }} \left( s \right)\phi _{{p_{2} }} \left( s \right)ds} = \left\{ \begin{gathered} \rho Al,\qquad p_{1} = p_{2} , \hfill \\ 0,\qquad\quad p_{1} \ne p_{2} . \hfill \\ \end{gathered} \right.$$
(22)

Assuming the beam is subjected to the harmonic concentrated excitation with amplitude \(f\) and frequency \(\Omega\)

$$F_{e} = f\cos \left( {{\Omega }t} \right).$$
(23)

Substituting Eq. (20) into Eq. (1), multiplying both sides by the mode function \(\phi _{p} \left( s \right)\), then integrating the result along the length of the beam l, one can obtain \(P + N\) Galerkin-reduced equations

$$\begin{gathered} M_{p} \ddot{q}_{p} + C_{p} \dot{q}_{p} + K_{p} q_{p} - \int_{0}^{l} {\left\{ {\frac{{EA}}{{2l}}\left[ {\int_{0}^{l} {\left( {\sum\limits_{{p = 1}}^{P} {\phi ^{\prime}_{p} \left( s \right)q_{p} } } \right)^{2} ds} } \right]\sum\limits_{{p = 1}}^{P} {\phi ^{\prime\prime}_{p} \left( s \right)q_{p} } } \right\}\phi _{p} \left( s \right)ds} \hfill \\ + \sum\limits_{{i = 1}}^{P} {m_{i} \ddot{v}_{i} \left( t \right)\phi _{p} \left( {s_{i} } \right)} = F_{p} ,{\text{ }}p = 1,2,...,P, \hfill \\ m_{i} \ddot{v}_{i} + k_{i} \left[ {v_{i} - \sum\limits_{{p = 1}}^{P} {\phi _{p} \left( {s_{i} } \right)q_{p} } } \right] + c_{i} \left[ {\dot{v}_{i} - \sum\limits_{{p = 1}}^{P} {\phi _{p} \left( {s_{i} } \right)\dot{q}_{p} } } \right] - g_{i} v_{i} \left( {t - \tau _{i} } \right) = 0,{\text{ }}i = 1,2,...,N, \hfill \\ \end{gathered}$$
(24)

where the pth modal mass, damping, stiffness and force are

$$\begin{gathered} M_{p} = \int_{0}^{l} {\rho A\phi _{p}^{2} \left( s \right)ds} , \hfill \\ C_{p} = \int_{0}^{l} {c\phi _{p}^{2} \left( s \right)ds} , \hfill \\ K_{p} = \int_{0}^{l} {EI\left[ {\phi ^{\prime\prime}_{p} \left( s \right)} \right]^{2} ds} = \int_{0}^{l} {EI\phi _{p} ''''\left( s \right)\phi _{p} \left( s \right)ds} , \hfill \\ F_{p} = f\cos \left( {\Omega t} \right)\phi _{p} \left( {s_{f} } \right). \hfill \\ \end{gathered}$$
(25)

Introducing the dimensionless transform parameters as.

\(\bar{t} = \bar{\omega }_{1} t = \sqrt {\frac{{K_{1} }}{{M_{1} }}} t\),\(\bar{x}_{p} = \frac{{q_{p} K_{1} }}{f}\),\(\bar{y}_{i} = \frac{{v_{i} K_{1} }}{f}\),\(\bar{\omega }_{p} = \sqrt {\frac{{K_{p} }}{{M_{p} }}} = \sqrt {\frac{{K_{p} }}{{M_{1} }}}\),\(\bar{\eta }_{i} = \sqrt {\frac{{k_{i} }}{{m_{i} }}}\),\(\bar{\zeta }_{p} = \frac{{C_{p} }}{{2\sqrt {M_{1} K_{1} } }}\),\(\bar{\gamma }_{i} = \frac{{c_{i} }}{{2\sqrt {m_{i} k_{i} } }}\),\(\bar{\lambda }_{p} = \frac{{\bar{\omega }_{p} }}{{\bar{\omega }_{1} }}\),\(\bar{\beta }_{i} = \frac{{\bar{\eta }_{i} }}{{\bar{\omega }_{1} }}\),\(\bar{\mu }_{i} = \frac{{m_{i} }}{{M_{1} }}\),\(\bar{\tau }_{i} = \omega _{1} \tau _{i}\),\(\bar{\Omega } = \frac{\Omega }{{\omega _{1} }}\),\(\bar{g}_{i} = \frac{{g_{i} }}{{\bar{\mu }_{i} K_{i} }}\),

substituting the above dimensionless parameters into Eq. (24), then dropping the bar of the dimensionless symbols \(\bar{t}\), \(\bar{x}_{p}\), \(\bar{y}_{i}\), \(\bar{\omega }_{p}\), \(\bar{\eta }_{i}\), \(\bar{\zeta }_{p}\), \(\bar{\gamma }_{i}\), \(\bar{\lambda }_{p}\), \(\bar{\beta }_{i}\), \(\bar{\mu }_{i}\), \(\bar{\tau }_{i}\), \(\bar{\Omega }\) and \(\bar{g}_{i}\) for convenience, we can derive Eq. (2).

For \(P = 2\), \(N = 2\) in the case from Sect. 3.1 to Sect. 3.3, the matrix and vector of Eq. (4) are

$${\mathbf{M}} = \left[ {\begin{array}{*{20}c} 1 & 0 & {\mu _{1} \phi _{1} \left( {s_{1} } \right)} & {\mu _{2} \phi _{1} \left( {s_{2} } \right)} \\ 0 & 1 & {\mu _{1} \phi _{2} \left( {s_{1} } \right)} & {\mu _{2} \phi _{2} \left( {s_{2} } \right)} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} } \right],$$
(26)
$${\mathbf{C}} = \left[ {\begin{array}{*{20}c} {2\zeta _{1} } & 0 & 0 & 0 \\ 0 & {2\zeta _{2} } & 0 & 0 \\ { - 2\beta _{1} \gamma _{1} \phi _{1} \left( {s_{1} } \right)} & { - 2\beta _{1} \gamma _{1} \phi _{2} \left( {s_{1} } \right)} & {2\beta _{1} \gamma _{1} } & 0 \\ { - 2\beta _{2} \gamma _{2} \phi _{1} \left( {s_{2} } \right)} & { - 2\beta _{2} \gamma _{2} \phi _{2} \left( {s_{2} } \right)} & 0 & {2\beta _{2} \gamma _{2} } \\ \end{array} } \right],$$
(27)
$${\mathbf{K}} = \left[ {\begin{array}{*{20}c} {\lambda _{1}^{2} } & 0 & 0 & 0 \\ 0 & {\lambda _{2}^{2} } & 0 & 0 \\ { - \beta _{1}^{2} \phi _{1} \left( {s_{1} } \right)} & { - \beta _{1}^{2} \phi _{2} \left( {s_{1} } \right)} & {\beta _{1}^{2} } & 0 \\ { - \beta _{2}^{2} \phi _{1} \left( {s_{2} } \right)} & { - \beta _{2}^{2} \phi _{2} \left( {s_{2} } \right)} & 0 & {\beta _{2}^{2} } \\ \end{array} } \right],$$
(28)
$${\mathbf{F}}_{n} = \left[ {\begin{array}{*{20}c} {f_{{nl,1}} } & {f_{{nl,2}} } & 0 & 0 \\ \end{array} } \right]^{{\text{T}}} ,$$
(29)
$${\mathbf{X}} = \left[ {\begin{array}{*{20}c} {x_{1} } & {x_{2} } & {y_{1} } & {y_{2} } \\ \end{array} } \right]^{{\text{T}}} ,$$
(30)
$$F = \left[ {\begin{array}{*{20}c} {\phi _{1} \left( {s_{f} } \right)\cos \left( {\Omega t} \right)} & {\phi _{2} \left( {s_{f} } \right)\cos \left( {\Omega t} \right)} & 0 & 0 \\ \end{array} } \right]^{{\text{T}}} .$$
(31)

The last matrix on the left side of Eq. (11) is

$${\mathbf{\bar{G}}}_{\tau } \left( {{\mathbf{p}}_{\tau } } \right) = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & { - g_{1} \lambda _{1}^{2} {\text{e}}^{{ - s\tau _{1} }} } & 0 \\ 0 & 0 & 0 & { - g_{2} \lambda _{2}^{2} {\text{e}}^{{ - s\tau _{2} }} } \\ \end{array} } \right).$$
(32)

Appendix B

The Averaging Method is adopted to derive the approximate steady-state harmonic response of Eq. (2). The approximate solution is assumed as

$$\begin{gathered} \left\{ \begin{gathered} x_{p} = A_{{p,1}} \cos \left( {\Omega t} \right) + A_{{p,2}} \sin \left( {\Omega t} \right) \hfill \\ \dot{x}_{p} = - A_{{p,1}} \Omega \sin \left( {\Omega t} \right) + A_{{p,2}} \Omega \cos \left( {\Omega t} \right) \hfill \\ \end{gathered} \right.,\,\quad p = 1,2...,P, \hfill \\ \left\{ \begin{gathered} y_{i} = B_{{i,1}} \cos \left( {\Omega t} \right) + B_{{i,2}} \sin \left( {\Omega t} \right) \hfill \\ \dot{y}_{i} = - B_{{i,1}} \Omega \sin \left( {\Omega t} \right) + B_{{i,2}} \Omega \cos \left( {\Omega t} \right) \hfill \\ \end{gathered} \right.,\qquad i = 1,2...,N, \hfill \\ \end{gathered}$$
(33)

where \(A_{{p,1}}\), \(A_{{p,2}}\), \(B_{{i,1}}\), \(B_{{i,{\text{2}}}}\) are slow-varying functions of \(t\). Substituting Eq. (33)into Eq. (2), reducing the trigonometric function and dropping the higher-order harmonic terms, then equating the coefficients of sine and cosine terms to zero, one can derive the amplitude modulation equations

$${\mathbf{v^{\prime}}} = \Gamma \left( {{\mathbf{v}},{\Omega },{\mathbf{p}},{\mathbf{p}}_{\tau } } \right),$$
(34)

where \({\mathbf{v}} = \left\{ {A_{{p,1}} ,A_{{p,2}} ,B_{{i,1}} ,B_{{i,2}} } \right\}^{{\text{T}}}\), \({\mathbf{p}}_{\tau } = \left\{ {g_{i} ,\tau _{i} } \right\}\), \(p = 1,2...,P\), \(i = 1,2...,N\). The response of the system can be obtained by solving the equation

$$\Gamma \left( {{\mathbf{v}},\Omega ,{\mathbf{p}},{\mathbf{p}}_{\tau } } \right) = 0.$$
(35)

The non-dimensional frequency response curve (FRC) of the beam at the location point \(s_{c}\) is

$$a\left( {s_{c} } \right) = \sqrt {\left( {\sum\limits_{{p = 1}}^{P} {A_{{p,1}} \phi _{p} \left( {s_{c} } \right)} } \right)^{2} + \left( {\sum\limits_{{p = 1}}^{P} {A_{{p,2}} \phi _{p} \left( {s_{c} } \right)} } \right)^{2} } .$$
(36)

The stability of the steady-state solution is determined by the corresponding eigenvalues of the Jacobian matrix. The Jacobian matrix of Eq. (34) for the response coefficients \({\mathbf{v}}\), time-delayed parameters \({\mathbf{p}}_{\tau } = \left\{ {g_{i} ,\tau _{i} } \right\},i = 1,...,N\) at the resonance frequencies \(\Omega\) is

$${\mathbf{J}}= \frac{{\partial \Gamma }}{{\partial {\mathbf{v}}}} = {\mathbf{J}}\left( {{\mathbf{v}},\Omega ,{\mathbf{p}} ,{\mathbf{p}}_{\tau }} \right).$$
(37)

Appendix C

Fig. 11
figure 11

The incremental-iteration procedure of the multimodal equal-peak principle for multimodal vibration suppression

Figure 11 shows the procedure of realizing the multimodal equal-peak principle for nonlinear multimodal vibration suppression. In Fig. 11, \({\mathbf{p}}_{0}\) is structural parameters of LTVAs designed by the generalized fixed-points theory as Eqs. (7)and (9), \({\mathbf{p}}\) is structural parameters of TDVAs that may be different from \({\mathbf{p}}_{0}\) due to some designable requirements in practical, \({\mathbf{p}}_{\tau }\) is the time-delayed parameters of the TDVAs, \({\mathbf{R}}\) is the harmonic coefficients at all the resonance frequencies, \(P\) is the modes retained for the nonlinear beam and \(N\) is the number of the TDVAs with \(N \le P\). By applying the procedure as Fig. 11, the optimal \({\mathbf{p}}_{\tau }\) with the minimum peaks around the concerned modes are obtained for the structural parameters of the TDVA p with increasing force amplitudes \(f\). The main steps of the procedure are shown as follows:

Step 0: Start the optimization procedure.

Step 1: For \(f = 0\), the beam degenerates into a linear one, the LTVAs with the structural parameters determined by Eqs. (7)and (9), the initial time-delayed parameters \({\mathbf{p}}_{\tau } = 0\), can suppress the peaks for the first two modes to the equal values (see Fig. 3a for details). For the case from Sect. 3.1 to 3.3, the structural parameters of the LTVAs are

$${\mathbf{p}}_{0} = \left\{ {\beta _{1}^{0} ,\beta _{2}^{0} ,\gamma _{1}^{0} ,\gamma _{2}^{0} ,f} \right\} = \left\{ {0.9813,3.9962,0.0838,0.019,0} \right\}.$$
(38)

The vector in Eq. (38) are selected as the initial structural parameters of TDVAs. The initial responses at all the resonance frequencies are determined by analyzing the degenerated linear system, as

$${\mathbf{R}}= \left\{ {{\mathbf{v}}_{1}^{0} ,\Omega _{1}^{0} ,{\mathbf{v}}_{2}^{0} ,\Omega _{2}^{0} ,{\mathbf{v}}_{3}^{0} ,\Omega _{3}^{0} ,{\mathbf{v}}_{4}^{0} ,\Omega _{4}^{0} } \right\},$$
(39)

where \({\mathbf{v}}_{i}^{0}\), \(i = 1,2,3,4\) is the vector of harmonic coefficients at the resonance frequency \(\Omega _{i}^{0}\),\(i = 1,2,3,4\) for the degenerated linear system. The values of the symbols in Eq. (39) are

$$\Omega _{1}^{0} = 0.942472,\Omega _{2}^{0} = 1.0399,\Omega _{3}^{0} = 3.95392,\Omega _{4}^{0} = 4.04211,$$
(40)
$$\begin{gathered} {\mathbf{v}}_{1}^{0} = \left\{ {2.55104,3.63826, - 0.0549022,0.000147676, - 12.2292,33.4645,2.61703,3.85413} \right\}, \hfill \\ {\mathbf{v}}_{2}^{0} = \left\{ { - 1.84668,3.99843, - 0.0558216,0.000204213, - 19.0512, - 22.2499,2.06857,4.28766} \right\}, \hfill \\ {\mathbf{v}}_{3}^{0} = \left\{ { - 0.0479816,0.0356316, - 1.20162, - 2.03108,0.0019377, - 0.00640033,35.144, - 68.9216} \right\}, \hfill \\ {\mathbf{v}}_{4}^{0} = \left\{ { - 0.04907, - 0.0308489,1.09542, - 2.00446,0.00620877, - 0.000535353,39.8503,60.1105} \right\}. \hfill \\ \end{gathered}$$
(41)

In this case, the structural parameters of TDVAs are

$${\mathbf{p}} = \left\{ {\beta _{1} ,\beta _{2} ,\gamma _{1} ,\gamma _{2} ,f} \right\} = \left\{ {1.5\beta _{1}^{0} ,1.5\beta _{2}^{0} ,0.3\gamma _{1}^{0} ,0.3\gamma _{2}^{0} ,0\sim10^{5} } \right\}.$$
(42)

The structural parameters of TDVA should be updated from \({\mathbf{p}}_{0}\) to \({\mathbf{p}}\) in \(k_{t}\) steps, each augmentation is \(~{\mathbf{\Delta p}} = {{\left( {{\mathbf{p}} - {\mathbf{p}}_{0} } \right)} \mathord{\left/ {\vphantom {{\left( {{\mathbf{{\rm {p}}}} - {\mathbf{{\rm {p}}}}_{0} } \right)} {k_{t} }}} \right. \kern-\nulldelimiterspace} {k_{t} }}\). The elements \(\beta _{1}\), \(\beta _{2}\), \(\gamma _{1}\), \(\gamma _{2}\), \(f\) are sequentially updated. It should be noted that every update step of the parameters from \({\mathbf{p}}_{0}\) to \({\mathbf{p}}\) may lead to the divergence of the two peaks around each mode (see Fig. 4 for details). The introduced time-delayed parameters \({\mathbf{p}}_{\tau } = \left\{ {g_{i} ,\tau _{i} } \right\},i = 1,...,N\) are calculated in Step 2 to retune the resonance peaks equally and minimum.

Step 2: In the kth update process of structural parameters, \({\mathbf{p}}_{k} = {\mathbf{p}}_{{k - 1}} + {\mathbf{\Delta p}}\), where the subscript k indicates the kth iteration. Update the optimal time-delayed parameters \({\mathbf{p}}_{\tau }\), the responses at resonance frequencies \({\mathbf{R}}\) for suppressing the peaks around all the modes concerned as follows:

Step 2.1: Update \({\mathbf{p}}_{\tau }\) for suppressing the peaks around the ith mode.

Fix \(\tau _{j}\) for \(j \ne i\), update other parameters in \({\mathbf{p}}_{\tau }\) by Eq. (14), the resonance peaks around the first mode are tuned equally by the extremes equal condition Eq. (18) and suppressed to the minimum values by the minimum peak condition Eq. (19). Meanwhile, the stability of the equilibrium state should be ensured by the stability condition Eq. (12). The optimal \({\mathbf{p}}_{\tau }\) and corresponding \({\mathbf{R}}\) are selected as the initial values for suppressing the resonance peaks around the next mode.

Step 2.2: Repeat Step 2.1 for other concerned modes, update \({\mathbf{p}}_{\tau }\) and \({\mathbf{R}}\), then obtain the optimal \({\mathbf{p}}_{\tau }\) for suppressing the peaks around all modes concerned.

Step 3: At the end of kth loop, the structural parameters of TDVAs \({\mathbf{p}}_{k}\), the force amplitudes \(f\), corresponding optimal time-delayed parameters \({\mathbf{p}}_{\tau }\) are selected as the initial values of (k + 1)th loop and then repeat Step 2.

Step 4: End the loop if \(k = k_{t}\) and obtain the structural parameters of TDVAs \({\mathbf{p}}\), the optimal time-delayed parameters \({\mathbf{p}}_{\tau }\), harmonic coefficients at all resonance frequencies \({\mathbf{R}}\) with various force amplitudes \(f\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Sun, X., Xu, J. et al. Multimodal vibration suppression of nonlinear Euler–Bernoulli beam by multiple time-delayed vibration absorbers. Meccanica 56, 2429–2449 (2021). https://doi.org/10.1007/s11012-021-01384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01384-6

Keywords

Navigation