Skip to main content

Advertisement

Log in

Impact of distortional hardening and the strength differential effect on the prediction of large deformation behavior of the Ti6Al4V alloy

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The ability of three plasticity models to predict the mechanical behavior of Ti6Al4V until fracture is presented. The first model is the orthotropic yield criterion CPB06 developed by Cazacu et al. (Int J Plast 22:1171–1194, 2006) with a distortional hardening, allowing for the description of material anisotropy and the strength differential effect. The second model is the anisotropic Hill’48 yield criterion with distortional hardening, describing the material anisotropy with quadratic functions but is unable to model the strength differential effect. Finally, the third model is the classical Hill’48 yield locus with isotropic hardening. Distortional hardening is modeled through five yield surfaces associated with five levels of plastic work. Each model is validated by comparing the finite element predictions with experimental results, such as the load and displacement field histories of specimens subjected to different stress triaxiality values. Tensile tests are performed on round bars with a V-notch, a through-hole, and two different radial notches; compression tests are performed on elliptical cross-section samples. The numerical results show that none of the models can perfectly predict both the measured load and the sample shape used for validation. However, the CPB06 yield criterion with distortional hardening minimizes the global error of the model predictions. The results provide a quantification of the influence of mechanical features such as hardening phenomenon, plastic anisotropy, and tension–compression asymmetry. The impact of these features on the prediction of the post-necking deformation behavior of the Ti6Al4V alloy is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Giglio M, Manes A, Viganò F (2012) Ductile fracture locus of Ti–6Al–4V titanium alloy. Int J Mech Sci 54:121–135. https://doi.org/10.1016/j.ijmecsci.2011.10.003

    Article  Google Scholar 

  2. Hernandez-Rodriguez MAL, Contreras-Hernandez GR, Juarez-Hernandez A, Beltran-Ramirez B, Garcia-Sanchez E (2015) Failure analysis in a dental implant. Eng Fail Anal 57:236–242. https://doi.org/10.1016/j.engfailanal.2015.07.035

    Article  Google Scholar 

  3. Simonetto E, Venturato G, Ghiotti A, Bruschi S (2018) Modelling of hot rotary draw bending for thin-walled titanium alloy tubes. Int J Mech Sci 148:698–706. https://doi.org/10.1016/j.ijmecsci.2018.09.037

    Article  Google Scholar 

  4. Wang Q, Bruschi S, Ghiotti A, Mu Y (2019) Modelling of fracture occurrence in Ti6Al4V sheets at elevated temperature accounting for anisotropic behaviour. Int J Mech Sci 150:471–483. https://doi.org/10.1016/j.ijmecsci.2018.10.045

    Article  Google Scholar 

  5. Badr MO, Barlat F, Rolfe B, Lee MG, Hodgson P, Weiss M (2016) Constitutive modelling of high strength titanium alloy Ti-6Al-4V for sheet forming applications at room temperature. Int J Solids Struct 80:334–347. https://doi.org/10.1016/j.ijsolstr.2015.08.025

    Article  Google Scholar 

  6. Barros PD, Alves JL, Oliveira MC, Menezes LF (2016) Modeling of tension–compression asymmetry and orthotropy on metallic materials: numerical implementation and validation. Int J Mech Sci 114:217–232. https://doi.org/10.1016/j.ijmecsci.2016.05.020

    Article  Google Scholar 

  7. Tuninetti V, Habraken AM (2014) Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy. Mater Sci Eng A 605:39–50. https://doi.org/10.1016/j.msea.2014.03.009

    Article  Google Scholar 

  8. Cazacu O, Revil-Baudard B, Chandola N (2018) Plasticity-damage couplings: from single crystal to polycrystalline materials. Springer, Basel. https://doi.org/10.1007/978-3-319-92922-4

    Book  MATH  Google Scholar 

  9. Alabort E, Kontis P, Barba D, Dragnevski K, Reed RC (2016) On the mechanisms of superplasticity in Ti–6Al–4V. Acta Mater 105:449–463. https://doi.org/10.1016/j.actamat.2015.12.003

    Article  Google Scholar 

  10. Liu J, Khan AS, Takacs L, Meredith CS (2015) Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: experiments, modeling and simulation. Int J Plast 64:151–163. https://doi.org/10.1016/j.ijplas.2014.08.007

    Article  Google Scholar 

  11. Meredith CS, Khan AS (2012) Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing. Int J Plast 30–31:202–217. https://doi.org/10.1016/j.ijplas.2011.10.006

    Article  Google Scholar 

  12. Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des 31:4866–4875. https://doi.org/10.1016/j.matdes.2010.05.030

    Article  Google Scholar 

  13. Li H, Zhang HQ, Yang H, Fu MW, Yang H (2017) Anisotropic and asymmetrical yielding and its evolution in plastic deformation: titanium tubular materials. Int J Plast 90:177–211. https://doi.org/10.1016/j.ijplas.2017.01.004

    Article  Google Scholar 

  14. Aretz H, Barlat F (2013) New convex yield functions for orthotropic metal plasticity. Int J Nonlinear Mech 51:97–111. https://doi.org/10.1016/j.ijnonlinmec.2012.12.007

    Article  Google Scholar 

  15. Abedini A, Butcher C, Nemcko MJ, Kurukuri S, Worswick MJ (2017) Constitutive characterization of a rare-earth magnesium alloy sheet (ZEK100-O) in shear loading: studies of anisotropy and rate sensitivity. Int J Mech Sci 128–129:54–69. https://doi.org/10.1016/j.ijmecsci.2017.04.013

    Article  Google Scholar 

  16. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194. https://doi.org/10.1016/j.ijplas.2005.06.001

    Article  MATH  Google Scholar 

  17. Revil-Baudard B, Chandola N, Cazacu O (2018) Prediction of the torsional response of HCP metals. J Phys Conf Ser 1063:012045. https://doi.org/10.1088/1742-6596/1063/1/012045

    Article  Google Scholar 

  18. Baral M, Hama T, Knudsen E, Korkolis YP (2018) Plastic deformation of commercially-pure titanium: experiments and modeling. Int J Plast 105:164–194. https://doi.org/10.1016/j.ijplas.2018.02.009

    Article  Google Scholar 

  19. Hu Q, Li X, Han X, Li H, Chen J (2017) A normalized stress invariant-based yield criterion: modeling and validation. Int J Plast 99:248–273. https://doi.org/10.1016/j.ijplas.2017.09.010

    Article  Google Scholar 

  20. Khan AS, Kazmi R, Farrokh B (2007) Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures. Int J Plast 23:931–950. https://doi.org/10.1016/j.ijplas.2006.08.006

    Article  MATH  Google Scholar 

  21. Holmen JK, Frodal BH, Hopperstad OS, Børvik T (2017) Strength differential effect in age hardened aluminum alloys. Int J Plast 99:144–161. https://doi.org/10.1016/j.ijplas.2017.09.004

    Article  Google Scholar 

  22. Lee EH, Stoughton TB, Yoon JW (2017) A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. Int J Plast 99:120–143. https://doi.org/10.1016/j.ijplas.2017.08.007

    Article  Google Scholar 

  23. Kondori B, Madi Y, Besson J, Benzerga AA (2018) Evolution of the 3D plastic anisotropy of HCP metals: experiments and modeling. Int J Plast. https://doi.org/10.1016/j.ijplas.2017.12.002

    Article  Google Scholar 

  24. Badr OM, Rolfe B, Zhang P, Weiss M (2017) Applying a new constitutive model to analyse the springback behaviour of titanium in bending and roll forming. Int J Mech Sci 128–129:389–400. https://doi.org/10.1016/j.ijmecsci.2017.05.025

    Article  Google Scholar 

  25. Li H, Zhang HQ, Yang H, Fu MW, Yang H (2017) Anisotropic and asymmetrical yielding and its evolution in plastic deformation: titanium tubular materials. Int J Plast 90:177–211. https://doi.org/10.1016/j.ijplas.2017.01.004

    Article  Google Scholar 

  26. Piao MJ, Huh H, Lee I, Park L (2017) Characterization of hardening behaviors of 4130 Steel, OFHC Copper, Ti6Al4V alloy considering ultra-high strain rates and high temperatures. Int J Mech Sci 131–132:1117–1129. https://doi.org/10.1016/j.ijmecsci.2017.08.013

    Article  Google Scholar 

  27. Li H, Hu X, Yang H, Li L (2016) Anisotropic and asymmetrical yielding and its distorted evolution: modeling and applications. Int J Plast 82:127–158. https://doi.org/10.1016/j.ijplas.2016.03.002

    Article  Google Scholar 

  28. Tuninetti V, Gilles G, Milis O, Pardoen T, Habraken AM (2015) Anisotropy and tension–compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V. Int J Plast 67:53–68. https://doi.org/10.1016/j.ijplas.2014.10.003

    Article  Google Scholar 

  29. Charlier R, Habraken AM (1990) Numerical modellisation of contact with friction phenomena by the finite element method. Comput Geotech 9:59–72. https://doi.org/10.1016/0266-352X(90)90029-U

    Article  Google Scholar 

  30. Charlier R, Cescotto S (1993) Frictional contact finite elements based on mixed variational principles. Int J Numer Meth Eng 36(10):1681–1701. https://doi.org/10.1002/nme.1620361005

    Article  MATH  Google Scholar 

  31. Gerard P, Harrington J, Charlier R, Collin F (2012) Hydro-mechanical modelling of the development of preferential gas pathways in claystone. In: Mancuso C, Jommi C, D’Onza F (eds) Unsaturated soils: research and applications. Springer, Berlin

    Google Scholar 

  32. François B, Labiouse V, Dizier A, Marinelli F, Charlier R, Collin F (2014) Hollow cylinder tests on boom clay: modelling of strain localization in the anisotropic excavation damaged zone. Rock Mech Rock Eng 47:71–86

    Article  ADS  Google Scholar 

  33. Bettaieb MB, Lemoine X, Duchêne L, Habraken AM (2009) Study of the formability of steels. Int J Mater Form 2:515–518

    Article  Google Scholar 

  34. Torres IN, Gilles G, Tchuindjang JT, Flores P, Lecomte-Beckers J, Habraken AM (2017) FE modeling of the cooling and tempering steps of bimetallic rolling mill rolls. Int J Mater Form 10:287–305

    Article  Google Scholar 

  35. Gilles G (2015) Experimental study and modeling of the quasi-static mechanical behavior of Ti6Al4V at room temperature. Dissertation, University of Liège

  36. Guzmán CF, Saavedra Flores E, Habraken AM (2018) Damage characterization in a ferritic steel sheet: experimental tests, parameter identification and numerical modeling. Int J Solids Struct 155:109–122. https://doi.org/10.1016/j.ijsolstr.2018.07.014

    Article  Google Scholar 

  37. Tuninetti V, Gilles G, Péron-Lührs V, Habraken AM (2012) Compression test for metal characterization using digital image correlation and inverse modeling. Proc IUTAM 4:206–2014. https://doi.org/10.1016/j.piutam.2012.05.022

    Article  Google Scholar 

  38. Tuninetti V, Gilles G, Milis O, Lecarme L, Habraken AM (2012) Compression test for plastic anisotropy characterization using optical full–field displacement measurement technique. In: Steel Res Int SE: 14th int conf metal forming, pp 1239–1242

  39. Guzmán CF, Tuninetti V, Gilles G, Habraken AM (2015) Assessment of damage and anisotropic plasticity models to predict Ti-6Al-4V behavior. Key Eng Mater 651–653:575–580. https://doi.org/10.4028/www.scientific.net/KEM.651-653.575

    Article  Google Scholar 

  40. Duchêne L, El Houdaigui F, Habraken AM (2007) Length changes and texture prediction during free end torsion test of copper bars with FEM and remeshing techniques. Int J Plast 23:1417–1438. https://doi.org/10.1016/j.ijplas.2007.01.008

    Article  MATH  Google Scholar 

  41. Li XK, Cescotto S (1997) A mixed element method in gradient plasticity for pressure dependent materials and modelling of strain localization. Comput Methods Appl Mech Eng 144:287–305. https://doi.org/10.1016/S0045-7825(96)01175-9

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Chilean Scientific Research Fund CONICYT FONDECYT 11170002, the Universidad de La Frontera Internal Research Fund DIUFRO (Project DI17-0070), the Marco multiannual convention FRO1855, and the cooperation with WBI/AGCID SUB2019/419031 (DIE19-0005) and the Belgian Scientific Research Fund FNRS for financial support. The authors would also like to thank O. Milis for its technical support.

Funding

This study was funded by CONICYT (FONDECYT 11170002), DIUFRO (DI17-0070), WBI/AGCID (SUB2019/419031), the Marco multiannual convention FRO1855 and the Belgian Scientific Research Fund FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Tuninetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Reduction of the CPB06 yield locus to Hill’48

Appendix: Reduction of the CPB06 yield locus to Hill’48

The equivalent anisotropic stress associated to the Hill’48 yield criterion is defined as:

$$\bar{\sigma }_{\text{Hill'48}}^{2} = 1/2\,{\varvec{\upsigma}}^{T} :{\mathbf{H}}:{\varvec{\upsigma}},$$
(9)

where \({\varvec{\upsigma}} = \left( {\begin{array}{*{20}c} {\sigma_{11} } \\ {\sigma_{22} } \\ {\sigma_{33} } \\ {\sigma_{12} } \\ {\sigma_{13} } \\ {\sigma_{23} } \\ \end{array} } \right)\) and \({\mathbf{H}} = \left[ {\begin{array}{*{20}c} {G + H} & { - H} & { - G} & 0 & 0 & 0 \\ { - H} & {H + F} & { - F} & 0 & 0 & 0 \\ { - G} & { - F} & {F + G} & 0 & 0 & 0 \\ 0 & 0 & 0 & {2N} & 0 & 0 \\ 0 & 0 & 0 & 0 & {2L} & 0 \\ 0 & 0 & 0 & 0 & 0 & {2M} \\ \end{array} } \right]\)

On the other hand, the equivalent stress for the CPB06 yield criterion is defined by:

$$\bar{\sigma }_{\text{CPB06}}^{a} = B\left\{ {\left( {\left| {\varSigma_{1} } \right| - k\,\varSigma_{1} } \right)^{\,a} + \left( {\left| {\varSigma_{2} } \right| - k\,\varSigma_{2} } \right)^{\,a} + \left( {\left| {\varSigma_{3} } \right| - k\,\varSigma_{3} } \right)^{a} } \right\} ,$$
(10)

where k is a parameter which takes into account the SD effect and a is the degree of homogeneity.\(\varSigma_{1} ,\)\(\varSigma_{2} ,\)\(\varSigma_{3}\) are the principal values of the tensor \({\varvec{\Sigma}}\) as defined by:

$${\varvec{\Sigma}} = {\mathbf{C}}:{\mathbf{S}} ,$$
(11)

where C is a fourth-order orthotropic tensor that accounts for the plastic anisotropy of the material and S is the deviator of the Cauchy stress tensor defined by:

$${\mathbf{S}} = {\mathbf{L}}:{\varvec{\upsigma}} .$$
(12)

The tensor C represented in Voigt notations is defined as follows:

$${\mathbf{C}} = \left[ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{13} } & 0 & 0 & 0 \\ {C_{12} } & {C_{22} } & {C_{23} } & 0 & 0 & 0 \\ {C_{13} } & {C_{23} } & {C_{33} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {C_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {C_{55} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {C_{66} } \\ \end{array} } \right]$$
(13)

The tensor L is defined by:

$${\mathbf{L}} = \left[ {\begin{array}{*{20}c} {2/3} & { - 1/3} & { - 1/3} & 0 & 0 & 0 \\ { - 1/3} & {2/3} & { - 1/3} & 0 & 0 & 0 \\ { - 1/3} & { - 1/3} & {2/3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right]$$
(14)

Rearranging the equations, the tensor \({\varvec{\Sigma}}\) can be written as follows

$${\varvec{\Sigma}} = {\mathbf{C}}:{\mathbf{L}}:{\varvec{\upsigma}} .$$
(15)

where:

$${\mathbf{C}}:{\mathbf{S}} = \left[ {\begin{array}{*{20}c} {\Phi_{1} } & {\Psi_{1} } & {\Omega_{1} } & 0 & 0 & 0 \\ {\Phi_{2} } & {\Psi_{2} } & {\Omega_{2} } & 0 & 0 & 0 \\ {\Phi_{3} } & {\Psi_{3} } & {\Omega_{3} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {C_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {C_{55} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {C_{66} } \\ \end{array} } \right]$$
(16)
$$\begin{aligned} \Phi_{1} = \frac{2}{3}C_{11} - \frac{1}{3}C_{12} - \frac{1}{3}C_{13} \hfill \\ \Phi_{2} = \frac{2}{3}C_{12} - \frac{1}{3}C_{22} - \frac{1}{3}C_{23} \hfill \\ \Phi_{3} = \frac{2}{3}C_{13} - \frac{1}{3}C_{23} - \frac{1}{3}C_{33} \hfill \\ \end{aligned}$$
$$\begin{aligned} \Psi_{1} = - \frac{1}{3}C_{11} + \frac{2}{3}C_{12} - \frac{1}{3}C_{13} \hfill \\ \Psi_{2} = - \frac{1}{3}C_{12} + \frac{2}{3}C_{22} - \frac{1}{3}C_{23} \hfill \\ \Psi_{3} = - \frac{1}{3}C_{13} + \frac{2}{3}C_{23} - \frac{1}{3}C_{33} \hfill \\ \end{aligned}$$
(17)
$$\begin{aligned} \Omega_{1} = - \frac{1}{3}C_{11} - \frac{1}{3}C_{12} + \frac{2}{3}C_{13} \hfill \\ \Omega_{2} = - \frac{1}{3}C_{12} - \frac{1}{3}C_{22} + \frac{2}{3}C_{23} \hfill \\ \Omega_{3} = - \frac{1}{3}C_{13} - \frac{1}{3}C_{23} + \frac{2}{3}C_{33} \hfill \\ \end{aligned}$$
$$B = \left\{ {\left( {\left| {\Phi_{1} } \right| - k\,\Phi_{1} } \right)^{\,a} + \left( {\left| {\Phi_{2} } \right| - k\,\Phi_{2} } \right)^{\,a} + \left( {\left| {\Phi_{3} } \right| - k\Phi_{3} } \right)^{a} } \right\}^{{\frac{ - 1}{a}}}$$
(18)

Consider the general form of CPB06 with \(a = 2\). As the Hill’48 model does not account for the SD effect, the value of k is set equal to zero (with \(k = 0\)). Then, Eq. (10) becomes:

$$\bar{\sigma }_{\text{CPB06}}^{a} = B\left( {\varSigma_{1}^{2} + \varSigma_{2}^{2} + \varSigma_{3}^{2} } \right) .$$
(19)

Replacing Eq. (18) into (19), one can have:

$$\bar{\sigma }_{\text{CPB06}}^{a} = \frac{{\varSigma_{1}^{2} + \varSigma_{2}^{2} + \varSigma_{3}^{2} }}{{\Phi_{1}^{2} + \Phi_{2}^{2} + \Phi_{3}^{2} }} .$$
(20)

Moreover, \(\varSigma_{1}^{2} + \varSigma_{2}^{2} + \varSigma_{3}^{2}\) can be written as follows:

$$\varSigma_{1}^{2} + \varSigma_{2}^{2} + \varSigma_{3}^{2} = tr\left( {{\varvec{\Sigma}}^{2} } \right) = \varSigma_{11}^{2} + \varSigma_{22}^{2} + \varSigma_{33}^{2} + 2\varSigma_{12}^{2} + 2\varSigma_{13}^{2} + 2\varSigma_{23}^{2}$$
$$\varSigma_{1}^{2} + \varSigma_{2}^{2} + \varSigma_{3}^{2} = {\varvec{\Sigma}}^{T} :{\mathbf{J}}:{\varvec{\Sigma}} ,$$
(21)

with \({\mathbf{J}} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ \end{array} } \right]\)

By considering Eq. (21), Eq. (19) becomes:

$$\bar{\sigma }_{\text{CPB06}}^{2} = B^{2} {\varvec{\Sigma}}^{T} {\mathbf{J}}{\varvec{\Sigma}} = B^{2} {\varvec{\upsigma}}^{T} \left( {{\mathbf{CL}}} \right)^{T} {\mathbf{J}}\left( {{\mathbf{CL}}} \right){\varvec{\upsigma}}$$
$$\bar{\sigma }_{\text{CPB06}}^{2} = B^{2} {\varvec{\upsigma}}^{T} :{\mathbf{H}}^{*} :{\varvec{\upsigma}},$$
(22)

with \({\mathbf{H*}} = \left[ {\begin{array}{*{20}c} {\Phi_{1}^{2} + \Phi_{2}^{2} + \Phi_{3}^{2} } & {\Phi_{1} \Psi_{1} + \Phi_{2} \Psi_{2} + \Phi_{3} \Psi_{3} } & {\Phi_{1} \Omega_{1} + \Phi_{2} \Omega_{2} + \Phi_{3} \Omega_{3} } & 0 & 0 & 0 \\ 0 & {\Psi_{1}^{2} + \Psi_{2}^{2} + \Psi_{3}^{2} } & {\Psi_{1} \Omega_{1} + \Psi_{2} \Omega_{2} + \Psi_{3} \Omega_{3} } & 0 & 0 & 0 \\ 0 & 0 & {\Omega_{1}^{2} + \Omega_{2}^{2} + \Omega_{3}^{2} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {2C_{44} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {2C_{55} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {2C_{66} } \\ \end{array} } \right]\)

Then, equating the Hill’48 (Eq. 9) with the CPB06 yield criterion reduced to Eq. (22), we have:

$$\bar{\sigma }_{\text{HILL}}^{2} = \frac{1}{2}{\varvec{\upsigma}}^{T} :{\mathbf{H}}:{\varvec{\upsigma}} = \bar{\sigma }_{\text{CPB06}}^{2} = B^{2} {\varvec{\upsigma}}^{T} :{\mathbf{H}}^{*} :{\varvec{\upsigma}}$$
(23)

As \(a = 2\) and \(k = 0\), one can have the system of equations that links the parameters of the Hill’48 yield criterion with the parameters of the CPB06 yield criterion:

$$\frac{1}{2}\left( {G + H} \right) = B^{2} \left( {\Phi_{1}^{2} + \Phi_{2}^{2} + \Phi_{3}^{2} } \right)$$
$$\frac{1}{2}\left( {F + H} \right) = B^{2} \left( {\Psi_{1}^{2} + \Psi_{2}^{2} + \Psi_{3}^{2} } \right)$$
$$\frac{1}{2}\left( {F + G} \right) = B^{2} \left( {\Omega_{1}^{2} + \Omega_{2}^{2} + \Omega_{3}^{2} } \right)$$
$$- \frac{H}{2} = B^{2} \left( {\Phi_{1} \Psi_{1} + \Phi_{2} \Psi_{2} + \Phi_{3} \Psi_{3} } \right)$$
(24)
$$- \frac{G}{2} = B^{2} \left( {\Phi_{1} \Omega_{1} + \Phi_{2} \Omega_{2} + \Phi_{3} \Omega_{3} } \right)$$
$$- \frac{F}{2} = B^{2} \left( {\Psi_{1} \Omega_{1} + \Psi_{2} \Omega_{2} + \Phi_{3} \Omega_{3} } \right)$$
$$L = 2B^{2} C_{44}^{2}$$
$$M = 2B^{2} C_{55}^{2}$$
$$N = 2B^{2} C_{66}^{2}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuninetti, V., Gilles, G., Flores, P. et al. Impact of distortional hardening and the strength differential effect on the prediction of large deformation behavior of the Ti6Al4V alloy. Meccanica 54, 1823–1840 (2019). https://doi.org/10.1007/s11012-019-01051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01051-x

Keywords

Navigation