Skip to main content
Log in

Alterations in peristaltic pumping of Jeffery nanoliquids with electric and magnetic fields

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The combined effects of electric and magnetic fields on peristaltic flow of Jeffery nanoliquids are analytically investigated. Double-diffusive convection in the asymmetric microchannel is also carried out. The walls of the microchannel are propagating with a finite phase difference in a sinusoidal manner. Rosseland diffusion flux model is employed to examine the thermal radiation effect. The zeta potential on the walls is considered very low to apply Hückel–Debye approximations. The coupled non-linear governing equations are simplified by using dimensional analysis and lubrication theory. The closed form solutions for potential function, nanoparticle fraction field, solute concentration field, temperature field, stream function, and axial velocity are derived under the appropriate boundary conditions. It is noteworthy that the pumping characteristics strongly depend on the magnetic fields, electric fields, electric double layer thickness, Jeffery parameter, thermal radiation and Grashof number. Furthermore, trapping phenomenon is analyzed under the effects of Hartmann number, Jeffrey parameter, Grashof number and Helmholtz–Smoluchowski velocity. The novelty of the present work is the amalgamation of biomimetics (peristaltic propulsion), electro-magneto-hydrodynamics and nanofluid dynamics to produce a smart pump system model for smart drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Hughes WF, Young FJ (1966) The electromagnetodynamics of fluids. In: Hughes WF, Young FJ (eds) Electromagnetodynamics fluids. Wiley, New York

    Google Scholar 

  2. Dulikravich G, Lynn S (1997) Unified electro-magneto-fluid dynamics (EMFD): a survey of mathematical models. Int J Non-Linear Mech 32:923–932

    Article  MATH  Google Scholar 

  3. Rashidi S, Esfahani JA, Maskaniyan M (2017) Applications of magnetohydrodynamics in biological systems—a review on the numerical studies. J Magn Magn, Mater

    Google Scholar 

  4. Makinde OD, Reddy MG, Venugopal Reddy K (2017) Effects of thermal radiation on MHD Peristaltic motion of Walters-B-fluid with heat source and slip conditions. J Appl Fluid Mech 10:1105–1112

    Article  Google Scholar 

  5. Wong PK, Wang T-H, Deval JH, Ho C-M (2004) Electrokinetics in micro devices for biotechnology applications. IEEEASME Trans Mechatron 9:366–376

    Article  Google Scholar 

  6. Shit GC, Mondal A, Sinha A, Kundu PK (2016) Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation. Physica A 462:1040–1057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Mirza IA, Abdulhameed M, Vieru D, Shafie S (2016) Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Comput Methods Programs Biomed 137:149–166

    Article  Google Scholar 

  8. Shit GC, Ranjit NK, Sinha A (2016) Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-newtonian model. J Bionic Eng 13:436–448

    Article  Google Scholar 

  9. Ranjit N, Shit GC (2017) Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy 128:649–660

    Article  Google Scholar 

  10. Shit GC, Mondal A, Sinha A, Kundu PK (2016) Electro-osmotically driven MHD flow and heat transfer in micro-channel. Physica A 449:437–454

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ranjit NK, Shit GC (2017) Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Physica A 482:458–476

    Article  ADS  MathSciNet  Google Scholar 

  12. Tripathi D, Jhorar R, Bég OA, Kadir A (2017) Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J Mol Liq 236:358–367

    Article  Google Scholar 

  13. Abdulhameed M, Vieru D, Roslan R (2017) Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel. Physica A 484:233–252

    Article  ADS  MathSciNet  Google Scholar 

  14. Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A (2017) Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng Sci Technol Int J 20:1129–1139

    Article  Google Scholar 

  15. Vargas C, Arcos J, Bautista O, Méndez F (2017) Hydrodynamic dispersion in a combined magnetohydrodynamic-electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials. Phys Fluids 29:092002

    Article  ADS  Google Scholar 

  16. Bianco V, Manca O, Nardini S, Vafai K (2015) Heat transfer enhancement with nanofluids. CRC Press, Boca Raton

    Book  Google Scholar 

  17. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S (2013) A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf 57:582–594

    Article  Google Scholar 

  18. Bahiraei M, Hangi M (2015) Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater 374:125–138

    Article  ADS  Google Scholar 

  19. Abbas MA, Bai Y, Rashidi MM, Bhatti MM (2016) Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy 18:90

    Article  ADS  MathSciNet  Google Scholar 

  20. Hayat T, Saleem A, Tanveer A, Alsaadi F (2017) Numerical analysis for peristalsis of Williamson nanofluid in presence of an endoscope. Int J Heat Mass Transf 114:395–401

    Article  Google Scholar 

  21. Akbar NS, Huda AB, Tripathi D (2016) Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. Eur Phys J Plus 131:332

    Article  Google Scholar 

  22. Makinde OD, Khan ZH, Khan WA, Tshehla MS (2017) Magneto hemodynamics of nanofluid with heat and mass transfer in a slowly varying symmetrical channel. Int J Eng Res Afr 28:118–141

    Article  Google Scholar 

  23. Hayat T, Shafique M, Tanveer A, Alsaedi A (2016) Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel. Int J Heat Mass Transf 102:54–63

    Article  Google Scholar 

  24. Hayat T, Saleem A, Tanveer A, Alsaadi F (2017) Numerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall properties. Int J Heat Mass Transf 114:1181–1187

    Article  Google Scholar 

  25. Hayat T, Aslam N, Alsaedi A, Rafiq M (2017) Numerical study for MHD peristaltic transport of Sisko nanofluid in a curved channel. Int J Heat Mass Transf 109:1281–1288

    Article  Google Scholar 

  26. Reddy MG, Prasnnakumara BC, Makinde OD (2017) Cross diffusion impacts on radiative peristaltic Carreau–Casson nanofluids flow in an irregular channel. Defect Diffus Forum 377:62–83

    Article  Google Scholar 

  27. Hayat T, Tanveer A, Alsaedi A (2016) Numerical analysis of partial slip on peristalsis of MHD Jeffery nanofluid in curved channel with porous space. J Mol Liq 224:944–953

    Article  Google Scholar 

  28. Bhatti MM, Zeeshan A, Ellahi R (2017) Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc Res 110:32–42

    Article  Google Scholar 

  29. Reddy MG, Makinde O (2016) Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq 223:1242–1248

    Article  Google Scholar 

  30. Tripathi D, Sharma A, Bég OA (2017) Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz–Smoluchowski velocity. Int J Heat Mass Transf 111:138–149

    Article  Google Scholar 

  31. Sarkar S, Ganguly S (2015) Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluid Nanofluidics 18:623–636

    Article  Google Scholar 

  32. Bhatti MM, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237–246

    Article  Google Scholar 

  33. Bhatti MM, Sheikholeslami M, Zeeshan A (2017) Entropy analysis on electro-kinetically modulated peristaltic propulsion of magnetized nanofluid flow through a microchannel. Entropy 19:481

    Article  ADS  Google Scholar 

  34. Strohmer AH, Obruca MK, Rander, Feichtinger W (1994) Relationship of the individual uterine size and the endometrial thickness in stimulated cycles. Fertil Steril 61:972–975

    Article  Google Scholar 

  35. De Vries K, Lyons EA, Ballard J, Levi CS, Lindsay DJ (1990) Contractions of the inner third of the myometrium. Am J Obstet Gynecol 162:679–682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tripathi.

Ethics declarations

Conflict interest

There is no conflict interest among the authors listed in manuscript.

Appendix

Appendix

$$M = \left( {1 + \lambda_{1} } \right)\,Ha,$$
$$a_{1} = \frac{Nt + Nb}{{Nb\,(h_{2} - h_{1} )}},$$
$$a_{2} = \frac{{a_{1} Nb\,\Pr }}{{\Pr Rn - N_{CT} N_{TC} \Pr + 1}},$$
$$a_{3} = \frac{{Gr_{C} (1 + \lambda_{1} )(1 + N_{CT} )}}{{h_{1} - h_{2} }} - \frac{{Gr_{F} (1 + \lambda_{1} )(Nb + Nt)}}{{Nb\,(h_{1} - h_{2} )}},$$
$$a_{4} = \frac{{a_{2} (\cosh (a_{2} h_{1} ) + \sinh (a_{2} h_{1} ))(\cosh (a_{2} h_{2} ) + \sinh (a_{2} h_{2} ))(1 + \lambda_{1} )(Gr_{T} Nb + Gr_{F} Nt - Gr_{C} N_{CT} Nb)}}{{Nb\,(\cosh (a_{2} h_{1} ) - \cosh (a_{2} h_{2} ) + \sinh (a_{2} h_{1} ) - \sinh (a_{2} h_{2} ))}},$$
$$\begin{aligned} a_{5} = \frac{{Uhs\,\kappa^{3} \sinh (h_{1} \kappa )(1 + \lambda_{1} )}}{{\sinh (\kappa (h_{1} - h_{2} ))}},\quad a_{6} = \frac{{Uhs\,\kappa^{3} \cosh (h_{1} \kappa )(1 + \lambda_{1} )}}{{\sinh (\kappa (h_{1} - h_{2} ))}}, \hfill \\ \hfill \\ \end{aligned}$$
$$\begin{aligned} a_{7} = & \frac{{a_{3} (h_{1}^{2} - h_{2}^{2} )}}{{2M^{2} }} - \frac{{a_{4} \left( {\cosh (a_{2} h_{1} ) - \cosh (a_{2} h_{2} ) - \sinh (a_{2} h_{1} ) + \sinh (a_{2} h_{2} )} \right)}}{{a_{2}^{4} - M^{2} a_{2}^{2} }} \\ & \quad + \;\frac{{a_{5} \left( {\cosh (h_{1} \kappa ) - \cosh (h_{2} \kappa ) + \sinh (h_{1} \kappa ) - \sinh (h_{2} \kappa )} \right) + a_{6} \left( {\cosh (h_{1} \kappa ) - \cosh (h_{2} \kappa ) - \sinh (h_{1} \kappa ) + \sinh (h_{2} \kappa )} \right)}}{{\kappa^{4} - M^{2} \kappa^{2} }} \\ \end{aligned}$$
$$\begin{aligned} a_{8} = & \frac{{a_{3} (h_{1} - h_{2} )}}{{M^{2} }} - \frac{{a_{4} \left( {\cosh (a_{2} h_{1} ) - \cosh (a_{2} h_{2} ) - \sinh (a_{2} h_{1} ) + \sinh (a_{2} h_{2} )} \right)}}{{a_{2}^{3} - M^{2} a_{2} }} \\ & \quad + \;\frac{{a_{5} \left( {\cosh (h_{1} \kappa ) - \cosh (h_{2} \kappa ) + \sinh (h_{1} \kappa ) - \sinh (h_{2} \kappa )} \right) - a_{6} \left( {\cosh (h_{1} \kappa ) - \cosh (h_{2} \kappa ) - \sinh (h_{1} \kappa ) + \sinh (h_{2} \kappa )} \right)}}{{\kappa^{3} - M^{2} \kappa }}, \\ \end{aligned}$$
$$a_{9} = \cosh (Mh_{2} ) - \cosh (Mh_{1} ) - \sinh (Mh_{1} ) + \sinh (Mh_{2} ) + M\left( {\cosh (Mh_{2} ) + \sinh (Mh_{2} )} \right)(h_{1} - h_{2} )$$
$$a_{10} = \cosh (Mh_{2} ) - \cosh (Mh_{1} ) + \sinh (Mh_{1} ) - \sinh (Mh_{2} ) - M\left( {\cosh (Mh_{2} ) - \sinh (Mh_{2} )} \right)(h_{1} - h_{2} )$$
$$\begin{aligned} a_{11} = & a_{7} - \frac{{\left( {a_{5} (\cosh (h_{2} \kappa ) + \sinh (h_{2} \kappa )) - a_{6} (\cosh (h_{2} \kappa ) - \sinh (h_{2} \kappa )} \right)(h_{1} - h_{2} )}}{{M^{2} \kappa - \kappa^{3} }} - \frac{{a_{3} h_{2} (h_{1} - h_{2} )}}{{M^{2} }} \\ & \quad + \;\frac{{a_{4} (h_{1} - h_{2} )\left( {\cosh (a_{2} h_{2} ) - \sinh (a_{2} h_{2} )} \right)}}{{a_{2} M^{2} - a_{2}^{3} }}, \\ \end{aligned}$$
$$a_{12} = q_{w} + h_{2} - h_{1} - a_{11} - \frac{Nb + Nt}{{Nb\,(h_{1} - h_{2} )}},$$
$$a_{13} = - M\left( {\cosh (Mh_{1} ) - \cosh (Mh_{2} ) + \sinh (Mh_{1} ) - \sinh (Mh_{2} )} \right),$$
$$a_{14} = M\left( {\cosh (Mh_{1} ) - \cosh (Mh_{2} ) - \sinh (Mh_{1} ) + \sinh (Mh_{2} )} \right),$$
$$\begin{aligned} C_{1} = & \frac{{a_{3} h_{2}^{2} }}{{2M^{2} }} - C_{3} \left( {\cosh (Mh_{2} ) + \sinh (Mh_{2} )} \right) - C_{4} \left( {\cosh (Mh_{2} ) - \sinh (Mh_{2} )} \right) - C_{2} h_{2} + \frac{{q_{w} }}{2} \\ & \quad - \;\frac{{a_{4} \left( {\cosh (a_{2} h_{2} ) - \sinh (a_{2} h_{2} )} \right)}}{{a_{2}^{4} - a_{2}^{2} M^{2} }} - \frac{{a_{5} \left( {\cosh (h_{2} \kappa ) + \sinh (h_{2} \kappa )} \right) + a_{6} \left( {\cosh (h_{2} \kappa ) - \sinh (h_{2} \kappa )} \right)}}{{\kappa^{4} - M^{2} \kappa^{2} }}. \\ \end{aligned}$$
$$\begin{aligned} C_{2} = & \frac{{a_{7} }}{{h_{1} - h_{2} }} + \frac{{(a_{8} a_{9} + a_{12} a_{13} )(\cosh (Mh_{1} ) - \cosh (Mh_{2} ) + \sinh (Mh_{1} ) - \sinh (Mh_{2} ))}}{{(a_{9} a_{14} - a_{10} a_{13} )(h_{1} - h_{2} )}} + \frac{Nb + Nt}{{Nb\,(h_{1} - h_{2} )^{2} }} \\ & \quad - \;\frac{{(a_{8} a_{10} + a_{12} a_{14} )(\cosh (Mh_{1} ) - \cosh (Mh_{2} ) - \sinh (Mh_{1} ) + \sinh (Mh_{2} ))}}{{(a_{9} a_{14} - a_{10} a_{13} )(h_{1} - h_{2} )}}, \\ \end{aligned}$$
$$C_{4} = \frac{{a_{8} a_{9} + a_{12} a_{13} }}{{a_{10} a_{13} - a_{9} a_{14} }},\quad C_{3} = \frac{{a_{8} a_{9} + a_{12} a_{13} }}{{a_{9} a_{14} - a_{10} a_{13} }},$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Ansu, A.K. & Tripathi, D. Alterations in peristaltic pumping of Jeffery nanoliquids with electric and magnetic fields. Meccanica 53, 3719–3738 (2018). https://doi.org/10.1007/s11012-018-0910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0910-7

Keywords

Navigation