Skip to main content
Log in

A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this investigation, a unified solution procedure based on the first-order shear deformation theory is presented for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary restraints, internal line supports and resting on elastic foundation. Under the current framework, regardless of boundary conditions, each of the displacement and rotation components of the plates is described as a standard Fourier cosine series supplemented with some auxiliary functions introduced to eliminate any possible discontinuities of the original displacements and their derivatives throughout the entire plate area including the boundaries and then to effectively enhance the convergence of the results. All the unknown expansion coefficients are treated as the generalized coordinates and determined by using the Raleigh–Ritz method. The current method can be universally applied to a variety of boundary conditions including all classical boundaries and their combinations and arbitrary elastic restraints. The excellent accuracy and reliability of current solutions is demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the current method can also predict the vibration characteristics of the plate with internal line supports and elastic foundation. Comprehensive studies on the effects of elastic restraint parameters, locations of line supports and foundation coefficients are also reported. New results for plates subjected to elastic boundary restraints, arbitrary internal line supports in both directions and resting on elastic foundations are presented, which may serve as benchmark solutions for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Biancolini ME, Brutti C, Reccia L (2005) Approximate solution for free vibrations of thin orthotropic rectangular plates. J Sound Vib 288(1–2):321–344

    Article  ADS  Google Scholar 

  2. Demasi L (2006) Quasi-3D analysis of free vibration of anisotropic plates. Compos Struct 74(4):449–457

    Article  Google Scholar 

  3. Xing YF, Liu B (2009) New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos Struct 89(4):567–574

    Article  MathSciNet  Google Scholar 

  4. Li R et al (2009) On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl Math Lett 22(12):1821–1827

    Article  MathSciNet  MATH  Google Scholar 

  5. Xing Y, Liu B (2009) Closed form solutions for free vibrations of rectangular Mindlin plates. Acta Mech Sin 25(5):689–698

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Liu B, Xing Y (2011) Comprehensive exact solutions for free in-plane vibrations of orthotropic rectangular plates. Eur J Mech A Solids 30(3):383–395

    Article  MATH  Google Scholar 

  7. Jafari AA, Eftekhari SA (2011) An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates. Appl Math Comput 218(6):2670–2692

    MathSciNet  MATH  Google Scholar 

  8. Yeh Y-L (2005) The effect of thermo-mechanical coupling for a simply supported orthotropic rectangular plate on non-linear dynamics. Thin Walled Struct 43(8):1277–1295

    Article  Google Scholar 

  9. Dumir PC, Bhaskar A (1988) Nonlinear forced vibration of orthotropic thin rectangular plates. Int J Mech Sci 30(5):371–380

    Article  MATH  Google Scholar 

  10. Dumir PC, Bhaskar A (1988) Nonlinear transient response of orthotropic thin rectangular plates on elastic foundations. Compos Struct 10(2):185–196

    Article  Google Scholar 

  11. Hearmon R (1959) The frequency of flexural vibration of rectangular orthotropic plates with clamped or supported edges. J Appl Mech 26(3–4):537–540

    MathSciNet  MATH  Google Scholar 

  12. Bazley NW, Fox DW, Stadter JT (1967) Upper and lower bounds for the frequencies of rectangular clamped plates. ZAMM J Appl Math Mech 47(3):191–198

    Article  MATH  Google Scholar 

  13. Meirovitch L (1975) Elements of vibration analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  14. Marangoni RD, Cook LM, Basavanhally N (1978) Upper and lower bounds to the natural frequencies of vibration of clamped rectangular orthotropic plates. Int J Solids Struct 14(8):611–623

    Article  MATH  Google Scholar 

  15. Bhat R (1985) Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. J Sound Vib 102(4):493–499

    Article  ADS  Google Scholar 

  16. Dickinson S, Di Blasio A (1986) On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J Sound Vib 108(1):51–62

    Article  ADS  MATH  Google Scholar 

  17. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, vol 2. McGraw-hill, New York

    MATH  Google Scholar 

  18. Gorman DJ, Leissa A (1982) Free vibration analysis of rectangular plates. J Appl Mech 49:683

    Article  Google Scholar 

  19. Brunnelle E, Oyibo G (1983) Generic buckling curves for specially orthotropic rectangular plates. AIAA Journal 21(8):1150–1156

    Article  ADS  MATH  Google Scholar 

  20. Gorman D (1990) Accurate free vibration analysis of clamped orthotropic plates by the method of superposition. J Sound Vib 140(3):391–411

    Article  ADS  Google Scholar 

  21. Gorman D (1993) Accurate free vibration analysis of the completely free orthotropic rectangular plate by the method of superposition. J Sound Vib 165(3):409–420

    Article  ADS  MATH  Google Scholar 

  22. Yu S, Cleghorn W (1993) Generic free vibration of orthotropic rectangular plates with clamped and simply supported edges. J Sound Vib 163(3):439–450

    Article  ADS  MATH  Google Scholar 

  23. Gorman D (1994) Free-vibration analysis of point-supported orthotropic plates. J Eng Mech 120(1):58–74

    Article  Google Scholar 

  24. Gorman D, Ding W (1995) Accurate free vibration analysis of laminated symmetric cross-ply rectangular plates by the superposition-Galerkin method. Compos Struct 31(2):129–136

    Article  Google Scholar 

  25. Gorman DJ (1999) Vibration analysis of plates by the superposition method. World Scientific, Singapore

    MATH  Google Scholar 

  26. Gorman D, Ding W (2003) Accurate free vibration analysis of completely free symmetric cross-ply rectangular laminated plates. Compos Struct 60(3):359–365

    Article  Google Scholar 

  27. Bhaskar K, Sivaram A (2008) Untruncated infinite series superposition method for accurate flexural analysis of isotropic/orthotropic rectangular plates with arbitrary edge conditions. Compos Struct 83(1):83–92

    Article  Google Scholar 

  28. Kshirsagar S, Bhaskar K (2008) Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series. J Sound Vib 314(3):837–850

    Article  ADS  Google Scholar 

  29. Jones R, Milne B (1976) Application of the extended Kantorovich method to the vibration of clamped rectangular plates. J Sound Vib 45(3):309–316

    Article  ADS  MATH  Google Scholar 

  30. Bhat R, Singh J, Mundkur G (1993) Plate characteristic functions and natural frequencies of vibration of plates by iterative reduction of partial differential equation. J Vib Acoust 115(2):177–181

    Article  Google Scholar 

  31. Bercin A (1996) Letter to the editor: free vibration solution for clamped orthotropic plates using the Kantorovich method. J Sound Vib 196(2):243–247

    Article  ADS  Google Scholar 

  32. Dalaei M, Kerr A (1996) Natural vibration analysis of clamped rectangular orthotropic plates. J Sound Vib 189(3):399–406

    Article  ADS  Google Scholar 

  33. Sakata T, Takahashi K, Bhat R (1996) Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation. J Sound Vib 189(1):89–101

    Article  ADS  MATH  Google Scholar 

  34. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12:69–77

    MathSciNet  MATH  Google Scholar 

  35. Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38

    MATH  Google Scholar 

  36. Mindlin RD, Schacknow A, Deresiewicz H (1955) Flexural vibrations of rectangular plates. DTIC document

  37. Brunelle E (1971) Buckling of transversely isotropic Mindlin plates. AIAA J 9(6):1018–1022

    Article  ADS  MATH  Google Scholar 

  38. Hashemi SH, Arsanjani M (2005) Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int J Solids Struct 42(3):819–853

    Article  MATH  Google Scholar 

  39. Liu B, Xing Y (2011) Exact solutions for free vibrations of orthotropic rectangular Mindlin plates. Compos Struct 93(7):1664–1672

    Article  MathSciNet  Google Scholar 

  40. Liu B, Xing YF, Reddy JN (2014) Exact compact characteristic equations and new results for free vibrations of orthotropic rectangular Mindlin plates. Compos Struct 118:316–321

    Article  Google Scholar 

  41. Liew K, Xiang Y, Kitipornchai S (1995) Research on thick plate vibration: a literature survey. J Sound Vib 180(1):163–176

    Article  ADS  MATH  Google Scholar 

  42. Reddy J (1985) A review of the literature on finite-element modeling of laminated composite plates. Shock Vib Dig 17(4):3–8

    Article  Google Scholar 

  43. Magrab EB (1975) Natural frequencies of elastically supported orthotropic rectangular plates. J Acoust Soc Am 58(S1):S42

    Article  ADS  Google Scholar 

  44. Khorshidi K (2011) Vibro-acoustic analysis of Mindlin rectangular plates resting on an elastic foundation. Sci Iran 18(1):45–52

    Article  MATH  Google Scholar 

  45. Kutlu A et al (2012) Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid. Ocean Eng 42:112–125

    Article  Google Scholar 

  46. Li WL (2000) Free vibrations of beams with general boundary conditions. J Sound Vib 237(4):709–725

    Article  ADS  Google Scholar 

  47. Xu H, Du J, Li W (2010) Vibrations of rectangular plates reinforced by any number of beams of arbitrary lengths and placement angles. J Sound Vib 329(18):3759–3779

    Article  ADS  Google Scholar 

  48. Li WL, Xu H (2009) An exact fourier series method for the vibration analysis of multispan beam systems. J Comput Nonlinear Dyn 4(2):021001

    Article  Google Scholar 

  49. Xu H, Li WL (2008) Dynamic behavior of multi-span bridges under moving loads with focusing on the effect of the coupling conditions between spans. J Sound Vib 312(4):736–753

    Article  ADS  Google Scholar 

  50. Zhang Y et al (2014) A series solution for the in-plane vibration analysis of orthotropic rectangular plates with elastically restrained edges. Int J Mech Sci 79:15–24

    Article  Google Scholar 

  51. Shi X et al (2014) A unified method for free vibration analysis of circular, annular and sector plates with arbitrary boundary conditions. J Vib Control. doi:10.1177/1077546314533580

    Google Scholar 

  52. Shi D et al (2015) A series solution for the in-plane vibration analysis of orthotropic rectangular plates with non-uniform elastic boundary constraints and internal line supports. Arch Appl Mech 85(1):51–73

    Article  Google Scholar 

  53. Du J et al (2010) Free in-plane vibration analysis of rectangular plates with elastically point-supported edges. J Vib Acoust 132(3):031002

    Article  Google Scholar 

  54. Li W et al (2009) An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. J Sound Vib 321(1):254–269

    ADS  Google Scholar 

  55. Chen YH et al. (2010) Power transmission analysis of coupled rectangular plates with elastically restrained coupling edge including in-plane vibration. In: 20th international congress on acoustics, ICA 2010, Sydney, pp 1–7

  56. Chen YH et al (2012) Vibration behaviors of a box-type structure built up by plates and energy transmission through the structure. J Sound Vib 331(4):849–867

    Article  ADS  Google Scholar 

  57. Xiang X et al (2014) A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures. Compos Struct 111:20–30

    Article  Google Scholar 

  58. Jin G et al (2014) A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints. Compos Struct 109:150–168

    Article  Google Scholar 

  59. Dai L et al (2012) Dynamic analysis of circular cylindrical shells with general boundary conditions using modified fourier series method. J Vib Acoust 134(4):041004

    Article  Google Scholar 

  60. Saha K, Kar R, Datta P (1996) Free vibration analysis of rectangular Mindlin plates with elastic restraints uniformly distributed along the edges. J Sound Vib 192(4):885–904

    Article  ADS  MATH  Google Scholar 

  61. Leissa AW (1973) The free vibration of rectangular plates. J Sound Vib 31(3):257–293

    Article  ADS  MATH  Google Scholar 

  62. Xiang Y, Wang C, Kitipornchai S (1994) Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations. Int J Mech Sci 36(4):311–316

    Article  MATH  Google Scholar 

  63. Zhou D et al (2004) Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation. Int J Numer Meth Eng 59(10):1313–1334

    Article  MATH  Google Scholar 

  64. Omurtag MH et al (1997) Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential. Int J Numer Meth Eng 40(2):295–317

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their useful and constructive comments. The authors also gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51209052), Heilongjiang Province Youth Science Fund Project (Nos. QC2011C013) and Harbin Science and Technology Development Innovation Foundation of youth (Nos. 2011RFQXG021)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Wang.

Appendix: Representative calculation for stiffness and mass matrices

Appendix: Representative calculation for stiffness and mass matrices

To illuminate the particular expression of the mass and stiffness matrixes clearly and tersely, six new variables are defined as:

$$p = m * (N + 1) + n + 1,\;\;\;q = (k - 1) * (N + 1) + n + 1,\;\;\;r = (k - 1) * (M + 1) + m + 1$$
$$p^{\prime } = m^{\prime } * (N + 1) + n^{\prime } + 1,\quad q^{\prime } = (k^{\prime } - 1) * (N + 1) + n^{\prime } + 1,\quad r = (k^{\prime } - 1) * (M + 1) + m^{\prime } + 1$$

The first row elements of K and M, are given below:

$$\begin{aligned} \{ {\mathbf{K}}_{1 - 1} \}_{{p,p^{\prime}}} &= 2\kappa G_{xz} h\varUpsilon_{cc}^{11} \varXi_{cc}^{00} + 2\kappa G_{yz} h\varUpsilon_{cc}^{00} \varXi_{cc}^{11} + (k_{y0}^{w} + \varTheta^{yy} k_{y0}^{w} )\varUpsilon_{cc}^{00} + (k_{x0}^{w} + \varTheta^{xx} k_{x0}^{w} )\varXi_{cc}^{00} \hfill \\ & \quad+ K_{w} \varUpsilon_{cc}^{00} \varXi_{cc}^{00} + K_{s} (\varUpsilon_{cc}^{11} \varXi_{cc}^{00} + \varUpsilon_{cc}^{00} \varXi_{cc}^{11} ) + \varLambda^{x} \varXi_{cc}^{00} + \varLambda^{y} \varUpsilon_{cc}^{00} \hfill \\ \end{aligned}$$
(28)
$$\begin{aligned} \{ {\mathbf{K}}_{1 - 2} \}_{{q,p^{\prime}}} = 2\kappa G_{xz} h\varUpsilon_{cc}^{11} \varXi_{\zeta c}^{00} + 2\kappa G_{yz} h\varUpsilon_{cc}^{00} \varXi_{\zeta c}^{11} + (k_{y0}^{w} + \varTheta^{yy} k_{y0}^{w} )\varUpsilon_{\zeta c}^{00} + \hfill \\ \begin{array}{*{20}c} {} & {} & {} & {} \\ \end{array} + K_{w} \varUpsilon_{cc}^{00} \varXi_{\zeta c}^{00} + K_{s} (\varUpsilon_{cc}^{11} \varXi_{\zeta c}^{00} + \varUpsilon_{cc}^{00} \varXi_{\zeta c}^{11} ) + \varLambda^{xy} \varUpsilon_{cc}^{00} + \varLambda^{x} \varXi_{\zeta c}^{00} \hfill \\ \end{aligned}$$
(29)
$$\begin{aligned} \{ {\mathbf{K}}_{1 - 3} \}_{{r,p^{\prime}}} &= 2\kappa G_{xz} h\varUpsilon_{\zeta c}^{11} \varXi_{cc}^{00} + 2\kappa G_{yz} h\varUpsilon_{\zeta c}^{00} \varXi_{cc}^{11} + (k_{x0}^{w} + \varTheta^{xx} k_{x0}^{w} )\varXi_{\zeta c}^{00} \\ & \quad+ K_{w} \varUpsilon_{\zeta c}^{00} \varXi_{cc}^{00} + K_{s} (\varUpsilon_{\zeta c}^{11} \varXi_{cc}^{00} + \varUpsilon_{\zeta c}^{00} \varXi_{cc}^{11} ) + \varLambda^{yx} \varXi_{cc}^{00} + \varLambda^{y} \varUpsilon_{\zeta c}^{00} \hfill \\ \end{aligned}$$
(30)
$$\{ {\mathbf{K}}_{1 - 4} \}_{{p,p^{\prime}}} = 2\kappa G_{xz} h\varUpsilon_{cc}^{01} \varXi_{cc}^{00}$$
(31)
$$\{ {\mathbf{K}}_{1 - 5} \}_{{q,p^{\prime}}} = 2\kappa G_{xz} h\varUpsilon_{cc}^{01} \varXi_{\zeta c}^{00}$$
(32)
$$\{ {\mathbf{K}}_{1 - 6} \}_{{r,p^{\prime}}} = 2\kappa G_{xz} h\varUpsilon_{\zeta c}^{01} \varXi_{cc}^{00}$$
(33)
$$\{ {\mathbf{K}}_{1 - 7} \}_{{p,p^{\prime}}} = 2\kappa G_{yz} h\varUpsilon_{cc}^{00} \varXi_{cc}^{01}$$
(34)
$$\{ {\mathbf{K}}_{1 - 8} \}_{{q,p^{\prime}}} = 2\kappa G_{yz} h\varUpsilon_{cc}^{00} \varXi_{\zeta c}^{01}$$
(35)
$$\{ {\mathbf{K}}_{1 - 9} \}_{{r,p^{\prime}}} = 2\kappa G_{yz} h\varUpsilon_{\zeta c}^{00} \varXi_{cc}^{01}$$
(36)
$$\{ {\mathbf{M}}_{1 - 1} \}_{{p,p^{\prime}}} = \rho h\varUpsilon_{cc}^{00} \varXi_{cc}^{00} ,\;\{ {\mathbf{M}}_{1 - 2} \}_{{q,p^{\prime}}} = \rho h\varUpsilon_{cc}^{00} \varXi_{\zeta c}^{00} ,\;\{ {\mathbf{M}}_{1 - 3} \}_{{r,p^{\prime}}} = \rho h\varUpsilon_{\zeta c}^{00} \varXi_{cc}^{00} ,$$
(37)
$${\mathbf{M}}_{1 - 4} = {\mathbf{M}}_{1 - 5} = {\mathbf{M}}_{1 - 6} = {\mathbf{M}}_{1 - 7} = {\mathbf{M}}_{1 - 8} = {\mathbf{M}}_{1 - 9} = {\mathbf{0}}.$$
(38)

where

$$\varUpsilon_{cc}^{ef} = \int_{0}^{a} {\frac{{d^{e} \cos (\lambda_{am} x)}}{{dx^{e} }}} \frac{{d^{f} \cos (\lambda_{{am^{\prime}}} x)}}{{dx^{f} }}dx\varXi_{cc}^{ef} = \int_{0}^{b} {\frac{{d^{e} \cos (\lambda_{bn} y)}}{{dy^{e} }}} \frac{{d^{f} \cos (\lambda_{{bn^{\prime}}} y)}}{{dy^{f} }}dy$$
$$\varUpsilon_{\zeta c}^{ef} = \int_{0}^{a} {\frac{{d^{e} \zeta_{a}^{l} (x)}}{{dx^{e} }}} \frac{{d^{f} \cos (\lambda_{{am^{\prime } }} x)}}{{dx^{f} }}dx\varXi_{\zeta c}^{ef} = \int_{0}^{b} {\frac{{d^{e} \zeta_{b}^{l} (y)}}{{dy^{e} }}} \frac{{d^{f} \cos (\lambda_{{bn^{\prime } }} y)}}{{dy^{f} }}dy$$
$$\varTheta^{xx} = ( - 1)^{{m + m^{\prime}}} ,\;\varTheta^{yy} = ( - 1)^{{n + n^{\prime}}} ,\;\varLambda^{y} = \sum\limits_{i = 1}^{{N_{i} }} {sk_{yi}^{i} } cos(\lambda_{bn} y_{i} )^{2} ,\;\varLambda^{x} = \sum\limits_{j = 1}^{{M_{i} }} {sk_{xj}^{j} } cos(\lambda_{am} x_{j} )^{2}$$
$$\varLambda^{xy} = \sum\limits_{i = 1}^{{N_{i} }} {sk_{yi}^{i} } \zeta_{b}^{l} (y_{i} )cos(\lambda_{bn} y_{i} ),\;\varLambda^{yx} = \sum\limits_{i = 1}^{{M_{i} }} {sk_{xj}^{j} } \zeta_{a}^{l} (x_{i} )cos(\lambda_{am} x_{i} )$$
$$\lambda_{am} = \frac{m\pi }{a},\;\lambda_{bn} = \frac{n\pi }{b},\;\lambda_{{am^{\prime}}} = \frac{{m^{\prime}\pi }}{a},\;\lambda_{{bn^{\prime}}} = \frac{{n^{\prime}\pi }}{b}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Shi, D. & Shi, X. A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation. Meccanica 51, 1985–2017 (2016). https://doi.org/10.1007/s11012-015-0345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0345-3

Keywords

Navigation