Skip to main content
Log in

A novel integration scheme for solution of consistent mass matrix in free and forced vibration analysis

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The solution of mass matrix is one of the important parts for dynamic analysis of finite element method (FEM). In general FEM procedure, the numerical integration of consistent mass matrix needs to carry out the same operation as the stiffness matrix, which includes the coordinate mapping and computing of Jacobian matrix. There has been proposed smoothed finite element method for evaluating stiffness matrix to avoid the coordinate mapping and computing of Jacobian matrix in the numerical integration. In this work, a novel integration scheme is proposed to calculate the consistent mass matrix, in which a symbolic integration is implemented by combining indefinite integral with Gauss divergence theorem. Then, the novel integration scheme of consistent mass matrix is incorporated with the smoothing strain technique for free and forced vibration analysis. The accuracy and the convergence properties of the present method are investigated by several numerical examples. It can be concluded from the numerical results that the present method is robust and stability for dynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth, Heinemann, Oxford

    MATH  Google Scholar 

  2. Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877

    Article  MATH  Google Scholar 

  3. Chen JS, Wu CT, Yoon S et al (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Eng 50(2):435–466

    Article  MATH  Google Scholar 

  4. Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates. Int J Numer Meth Eng 84(10):1222–1256

    Article  MathSciNet  MATH  Google Scholar 

  5. Bordas SPA, Rabczuk T, Hung NX et al (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23):1419–1443

    Article  Google Scholar 

  6. Nguyen-Thoi T, Vu-Do HC, Rabczuk T et al (2010) A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng 199(45):3005–3027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Liu GR, Chen L, Nguyen-Thoi T et al (2010) A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems. Int J Numer Meth Eng 83(11):1466–1497

    Article  MathSciNet  MATH  Google Scholar 

  8. Nguyen-Xuan H, Liu GR, Nguyen-Thoi T et al (2009) An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures. Smart Mater Struct 18(6):065015

    Article  ADS  Google Scholar 

  9. Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4):1100–1130

    Article  ADS  Google Scholar 

  10. Phan-Dao HH, Nguyen-Xuan H, Thai-Hoang C et al (2013) An edge-based smoothed finite element method for analysis of laminated composite plates. Int J Comput Methods 10(01):1340005

    Article  MathSciNet  Google Scholar 

  11. Luong-Van H, Nguyen-Thoi T, Liu GR et al (2014) A Cell-based smoothed Finite Element Method using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation. Eng Anal Bound Elem 42:8–19

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen-Thoi T, Phung-Van P, Thai-Hoang C et al (2013) A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int J Mech Sci 74:32–45

    Article  Google Scholar 

  13. Chen L, Rabczuk T, Bordas SPA et al (2012) Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput Methods Appl Mech Eng 209:250–265

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Liu P, Bui TQ, Zhang C et al (2012) The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids. Comput Methods Appl Mech Eng 233:68–80

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3):803–820

    Article  ADS  Google Scholar 

  16. Nguyen-Thoi T, Phung-Van P, Rabczuk T T et al (2013) Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM). Int J Comput Methods 10(01):1340008

    Article  MathSciNet  Google Scholar 

  17. Kim K (1993) A review of mass matrices for eigenproblems. Comput Struct 46(6):1041–1048

    Article  Google Scholar 

  18. Wu SR (2006) Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput Methods Appl Mech Eng 195(44):5983–5994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cohen G, Joly P, Tordjman N (1994) Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Elem Anal Des 16(3):329–336

    Article  MathSciNet  MATH  Google Scholar 

  20. Babuška I, Osborn J (1991) Eigenvalue problems. Handb Numer Anal 2:641–787

    MATH  Google Scholar 

  21. Dasgupta G (2003) Integration within polygonal finite elements. J Aerosp Eng 16(1):9–18

    Article  Google Scholar 

  22. Thiagarajan V, Shapiro V (2014) Adaptively weighted numerical integration over arbitrary domains. Comput Math Appl 67(9):1682–1702

    Article  MathSciNet  Google Scholar 

  23. Li H, Wang QX, Lam KY (2004) Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis. Comput Methods Appl Mech Eng 193(23):2599–2619

    Article  ADS  MATH  Google Scholar 

  24. Wang Y, Hu D, Yang G et al (2015) An effective sub-domain smoothed Galerkin method for free and forced vibration analysis. Meccanica 50(5):1285–1301

    Article  MathSciNet  MATH  Google Scholar 

  25. Belytschko T (1983) An overview of semidiscretization and time integration procedures. In: Computational methods for transient analysis. Amsterdam, North-Holland, pp 1–65

  26. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Acknowledgments

Financial supports from National Natural Science Foundation of China (11372106, 11272118) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Hu, D., Ma, G. et al. A novel integration scheme for solution of consistent mass matrix in free and forced vibration analysis. Meccanica 51, 1897–1911 (2016). https://doi.org/10.1007/s11012-015-0343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0343-5

Keywords

Navigation