Skip to main content
Log in

Particulate random composites homogenized as micropolar materials

  • Multi-Scale and Multi-Physics Modelling for Complex Materials
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Many composite materials, widely used in different engineering fields, are characterized by random distributions of the constituents. Examples range from polycrystals to concrete and masonry-like materials. In this work we propose a statistically-based scale-dependent multiscale procedure aimed at the simulation of the mechanical behavior of a two-phase particle random medium and at the estimation of the elastic moduli of the energy-equivalent homogeneous micropolar continuum. The key idea of the procedure is to approach the so-called Representative Volume Element (RVE) using finite-size scaling of Statistical Volume Elements (SVEs). To this end properly defined Dirichlet, Neumann, and periodic-type non-classical boundary value problems are numerically solved on the SVEs defining hierarchies of constitutive bounds. The results of the performed numerical simulations point out the importance of accounting for spatial randomness as well as the additional degrees of freedom of the continuum with rigid local structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eringen AC (1999) Microcontinuum field theories. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  2. Forest S, Dendievel R, Canova G (1999) Estimating the overall properties of heterogeneous Cosserat materials. Model Simul Mater Sci Eng 7:829–840

    Article  ADS  Google Scholar 

  3. Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous Cosserat media. Int J Solids Struct 38:4585–4608

    Article  MathSciNet  MATH  Google Scholar 

  4. Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74:2518–2534

    Article  Google Scholar 

  5. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  ADS  Google Scholar 

  6. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679

    Article  MATH  Google Scholar 

  7. Khisaeva Z, Ostoja-Starzewski M (2006) On the size of RVE in finite elasticity of random composites. J Elast 85:153–173

    Article  MathSciNet  MATH  Google Scholar 

  8. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  9. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550

    Article  MATH  ADS  Google Scholar 

  10. Lakes RS (1983) Size effects and micromechanics of a porous solid. J Mater Sci 18:2752–2781

    Article  ADS  Google Scholar 

  11. Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22(1):55–63

    Article  Google Scholar 

  12. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    MATH  Google Scholar 

  13. Nowacki W (1970) Theory of micropolar elasticity, CISM courses and lectures, vol 25. Springer-Verlag, Wien, New York

    Book  Google Scholar 

  14. Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21:112–132

    Article  Google Scholar 

  15. Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials. Chapman & Hall/CRC/Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  16. Ostoja-Starzewski M, Du X, Khisaeva Z, Li W (2007) Comparisons of the size of representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int J Multiscale Comput Eng 5:73–82

    Article  Google Scholar 

  17. Onck PR (2002) Cosserat modeling of cellular solids. C R Mécanique 330:717–722

    Article  MATH  Google Scholar 

  18. Pau A, Trovalusci P (2012) Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mech 223(7):1455–1471

    Article  MATH  Google Scholar 

  19. Sab K, Nedjar B (2005) Periodization of random media and representative volume element size for linear composites. C R Acad Sci Mécanique 333:187–195

    Article  MATH  ADS  Google Scholar 

  20. Salmi M, Auslender F, Bornert M, Fogli M (2012) Apparent and effective mechanical properties of linear matrix-inclusion random composites: improved bounds for the effective behavior. Int J Solids Struct 49:1195–1211

    Article  Google Scholar 

  21. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in Physics, vol 127. Springer-Verlag, Berlin

  22. Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approach. Int J Solids Struct 37:2285–2311

    Article  MATH  Google Scholar 

  23. Trovalusci P, Masiani R (1999) Material symmetries of micropolar continua equivalent to lattices. Int J Solids Struct 36(14):2091–2108

    Article  MathSciNet  MATH  Google Scholar 

  24. Trovalusci P, Pau A (2013) Derivation of microstructured continua from lattice systems via principle of virtual works. the case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech 225(1):157–177

  25. van der Sluis O, Schreurs PJG, Brekelmans WAM, Meijer HEH (2000) Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech Mater 32:449–462

    Article  Google Scholar 

  26. Trovalusci P, Ostoja-Starzewski M, De Bellis ML, Murrali A (2014) Scale-dependent homogenization of random composites as micropolar continua. (submitted)

Download references

Acknowledgments

This research has been partially supported by MIUR (Italian Ministero dell’Università e della Ricerca Scientifica, Sapienza research Grant 2011, 2013; Prin 2010–2011) and by the NSF under Grant CMMI–1030940.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Trovalusci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trovalusci, P., De Bellis, M.L., Ostoja-Starzewski, M. et al. Particulate random composites homogenized as micropolar materials. Meccanica 49, 2719–2727 (2014). https://doi.org/10.1007/s11012-014-0031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0031-x

Keywords

Navigation