Skip to main content
Log in

Probabilistic multiscale analysis of three-phase composite material considering uncertainties in both physical and geometrical parameters at microscale

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A probabilistic multiscale framework is proposed to characterize the probabilistic behaviors of macroscopic elastic properties of multiphase composite materials. The first-order perturbation-based stochastic homogenization method is extended to incorporate inherent randomness existed in multiphase constituents materials on basis of our previous work for porous material. Moreover, a generalized stochastic method is introduced to combine above with morphological nonparametric uncertainties. A numerical example for coated particulate composite material demonstrated the feasibility and effectiveness of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kageyama, H.: Automatic used CFRP technology: present and future. Automob. Technol. 68, 75–81 (2014). (in Japanese)

    Google Scholar 

  2. Gupta, N., Luong, D.D., Cho, K.: Magnesium matrix composite foams-density mechanical properties and applications. Metals 2, 238–252 (2012)

    Article  Google Scholar 

  3. Lions, J.L.: Some methods in the mathematical analysis of systems sand their control. Science Press p1 (1981)

  4. Guedes, J.M., Kikuchi, N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. Eng. 83, 143–198 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Takano, N., Zako, M., Okuno, Y.: Multi-scale finite element analysis of porous materials and components by asymptotic homogenization theory and enhanced mesh superposition method. Model. Simul. Mater. Sci. Eng. 11, 137–156 (2003)

    Article  Google Scholar 

  6. Takano, N., Fukasawa, K., Nishiyabu, K.: Structural strength prediction for porous titanium based on micro-stress concentration by micro-CT. Int. J. Mech. Sci. 52, 229–235 (2010)

    Article  Google Scholar 

  7. Mcwilliams, B.A., Ramesh, K.T., Yen, C.F.: Probabilistic response of heterogeneous particle reinforced metal matrix composites with particle sized dependent strengthening. Comput. Mater. Sci. 79, 15–24 (2013)

    Article  Google Scholar 

  8. Chen, Q., Zhu, H.H., Ju, J.W., Guo, F., Wang, L.B., Yan, Z.G., Deng, T., Zhou, S.: A stochastic micromechanical model for multiphase composites containing spherical inhomogeneities. Acta Mech. 226, 1861–1880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doitrand, A., Fagiano, C., Irisarri, F.X., Hisekorn, M.: Comparison between voxel and consistent meso-scale models of woven composites. Compos. Part A 73, 143–154 (2015)

    Article  Google Scholar 

  10. Miyauchi, Y., Takano, N., Wen, P.: Stochastic homogenization analysis of FIB-SEM image-based hierarchical model of sprayed porous ZrO2. Mech. Eng. Lett. 1, 1–8 (2015)

    Article  Google Scholar 

  11. Childers, E.P., Wang, M.O., Becker, M.L., Fisher, J.P., Dean, D.: 3D printing of resorbable poly tissue engineering scaffolds. MRS Bull. 40, 119–125 (2015)

    Article  Google Scholar 

  12. Zheng, J., Xie, S., Lin, F., Hua, G., Yu, T., Reneker, D.H., Becker, M.L.: 4-Dibenzocyclooctynol as an initiator for poly: copper-free clickable polymer and nanofiber-based scaffolds. Polym. Chem 4, 2215–2218 (2013)

    Article  Google Scholar 

  13. Koishi, M., Shiratori, M., Miyoshi, T., Miyano, A.: Stochastic homogenization method for composite materials with uncertain microstructures. Trans. JSME Part A 62, 2264–2269 (1996)

    Article  Google Scholar 

  14. Kamiski, M., Lauke, B.: Probabilistic and stochastic analysis of the effective properties for the particle reinforced elastomers. Comput. Mater. Sci. 56, 147–160 (2012)

    Article  Google Scholar 

  15. Ghanem, R.G., Venketeswaran, A., Suresh, R., Gupta, S.: A Spectral Approach, vol. 11501. pp. 12–18 (2003)

  16. Sasikumar, P., Venketeswaran, A., Suresh, R., Gupta, S.: A data driven polynomial chaos based approach for stochastic analysis of CFRP laminated composite plates. Compos. Struct. 125, 212–227 (2015)

    Article  Google Scholar 

  17. Starzewski, M.O.: Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21, 112–132 (2006)

    Article  Google Scholar 

  18. Eshelby, J.D.: Elastic inclusions and inhomogeneities. Prog. Solid Mech. 2, 89–140 (1961)

    MathSciNet  Google Scholar 

  19. Sakata, S., Ashida, F., Ohsumimoto, K.: Stochastic homogenization analysis of a porous material with the perturbation method considering a microscopic geometrical random variation. Int. J. Mech. Sci. 77, 145–154 (2013)

    Article  Google Scholar 

  20. Basaruddin, K.S., Takano, N., Akiyama, H.: Uncertainty modeling in the prediction of effective mechanical properties using stochastic homogenization method. Mater. Trans. 54, 1250–1256 (2013)

    Article  Google Scholar 

  21. Tawara, D., Nagahata, M., Takano, N., Kinoshita, H., Abe, S.: Probabilistic analysis of mechanical behavior of mandibular trabecular bone using a calibrated stochastic homogenization model. Acta Mech. 226, 3275–3287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wen, P., Yokota, K., Takano, N.: Probabilistic prediction of homogenized property and update of prediction for spherical porous material considering microstructural uncertainties. J. Multiscale Model. (accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, P., Takano, N. & Kurita, D. Probabilistic multiscale analysis of three-phase composite material considering uncertainties in both physical and geometrical parameters at microscale. Acta Mech 227, 2735–2747 (2016). https://doi.org/10.1007/s00707-016-1640-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1640-3

Keywords

Navigation