Skip to main content
Log in

Assessing the early changes of cerebral glucose metabolism via dynamic 18FDG-PET/CT during cardiac arrest

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

To study the changes of cerebral glucose metabolism (CGM) during the phase of return of spontaneous circulation (ROSC) after cardiac arrest (CA), we used 18-fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) to measure the CGM changes in six beagle canine models. After the baseline 18FDG-PET/CT was recorded, ventricular fibrillation (VF) was induced for 6 min, followed by close-chest cardiopulmonary resuscitation (CPR) in conjunction with intravenous (IV) administration of epinephrine and external defibrillator shocks until ROSC was achieved, within 30 min. The 18FDG was recorded prior to intravenous administration at 0 h (baseline), and at 4, 24, and 48 h after CA with ROSC. We evaluated the expression of two key control factors in canine CGM, hexokinase I (HXK I) and HXK II, by immunohistochemistry at the four above mentioned time points. Electrically induced VF of 6 min duration was successfully induced in the dogs. Resuscitation was then performed to maintain blood pressure stability. Serial 18FDG-PET/CT scans found that the CGM decreased at 4 h after ROSC and remained lower than the baseline even at 48 h. The expression of HXK I and II levels were consistent with the changes in CGM. These data from our present work showed that 18FDG-PET/CT imaging can be used to detect decreased CGM during CA and was consistent with the results of CMRgl. Furthermore, there were also concomitant changes in the expression of HXK I and HXK II. The decrease in CGM may be an early sign of hyperacute global cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, Ericson K, Flodmark O (1995) Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr 84:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Blodget T, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242:360–385

    Article  Google Scholar 

  • Blodgett TM, McCook BM, Federle MP (2006) Positron emission tomography/computed tomography: protocol issues and options. Semin Nucl Med 36:157–158

    Article  PubMed  Google Scholar 

  • Chen W (2007) Clinical application of PET in brain tumors. J Nucl Med 48:1468–1481

    Article  PubMed  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33:228–237

    Article  PubMed  Google Scholar 

  • De Lange C, Malinen E, Qu H, Johnsrud K, Skretting A, Saugstad OD, Munkeby BH (2012) Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs. Eur J Nucl Med Mol Imaging 39:792–799

    Article  PubMed  Google Scholar 

  • Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC (1983) Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol 25:143–151

    Article  CAS  PubMed  Google Scholar 

  • Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P (1994) Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 343:1055–1059

    Article  CAS  PubMed  Google Scholar 

  • Ehlenbach WJ, Barnato AE, Curtis JR, Kreuter W, Koepsell TD, Deyo RA, Stapleton RD (2009) Epidemiologic study of in-hospital cardiopulmonary resuscitation in the elderly. N Engl J Med 361:22–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eom KD, Lim CY, Gu SH, Kang BT, Kim YB, Jang DP, Woo EJ, Cho ZH, Park HM (2008) Positron emission tomography features of canine necrotizing meningoencephalitis. Vet Radiol Ultrasound 49:595–599

    Article  PubMed  Google Scholar 

  • Fischer M, Hossmann KA (1995) No-reflow after cardiac arrest. Intensive Care Med. 21:132–141

    Article  CAS  PubMed  Google Scholar 

  • Gilland E, Bona E, Hagberg H (1998) Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab 18:222–228

    Article  CAS  PubMed  Google Scholar 

  • Hossmann KA, Fischer M, Bockhorst K, Hoehn-Berlage M (1994) NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J Cereb Blood Flow Metab 14:723–731

    Article  CAS  PubMed  Google Scholar 

  • Idris AH, Becker LB, Ornato JP, Hedges JR, Bircher NG, Chandra NC, Cummins RO, Dick W, Ebmeyer U, Halperin HR, Hazinski MF, Kerber RE, Kern KB, Safar P, Steen PA, Swindle MM, Tsitlik JE, Von Planta I, Wears RL, Weil MH (1996) Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a task force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine, Writing Group. Circulation 94:2324–2336

    Article  CAS  PubMed  Google Scholar 

  • Kannan S, Chugani HT (2010) Applications of positron emission tomography in the newborn nursery. Semin Perinatol 34:39–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Keyes Jr JW (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839

    PubMed  Google Scholar 

  • Leonov Y, Sterz F, Safar P, Johnson DW, Tisherman SA, Oku K (1992) Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 23:45–53

    Article  CAS  PubMed  Google Scholar 

  • Link MS, Atkins DL, Passman RS, Halperin HR, Samson RA, White RD, Cudnik MT, Berg MD, Kudenchuk PJ, Kerber RE (2010) Part 6: electrical therapies: automated external defibrillators, defibrillation, cardioversion, and pacing: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:706–719

    Article  Google Scholar 

  • Liu R, Li X, Hu CL, Jiang L, Dai G, Wu GF, Huang GQ, Wei HY, Liao XX (2012) The changes of brain water diffusion and blood flow on diffusion-weighted and perfusion-weighted imaging in a canine model of cardiac arrest. Resuscitation 83:645–651

    Article  PubMed  Google Scholar 

  • Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, Shiomi S, Ochi H, Watanabe Y (2003) Assessment of microPET performance in analysing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. NeuroImage 20:2040–2050

    Article  PubMed  Google Scholar 

  • Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, Inoue O, Ito K (2004) Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse 54:207–213

    Article  CAS  PubMed  Google Scholar 

  • Nozari A, Rubertsson S, Gedeborg R, Nordgren A, Wiklund L (1999) Maximisation of cerebral blood flow during experimental cardiopulmonary resuscitation does not ameliorate postresuscitation hypoperfusion. Resuscitation 40:27–35

    Article  CAS  PubMed  Google Scholar 

  • Phelps ME (1991) PET: a biological imaging technique. Neurochem Res 16:929–940

    Article  CAS  PubMed  Google Scholar 

  • Schwab DA, Wilson JE (1989) Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc Natl Acad Sci U S A 86:2563–2567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, Simell O, Wegelius U (1993) Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med 20:759–765

    Article  CAS  PubMed  Google Scholar 

  • Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, Svenningsen NW (2001) Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 49:495–501

    Article  CAS  PubMed  Google Scholar 

  • Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, Upton AR, Nobbs PT, Sinclair JC (1988) Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full-term newborn infant. Neuropediatrics 19:146–153

    Article  CAS  PubMed  Google Scholar 

  • Toorangian S, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2(18F)fluoro-D-glucose by direct nucleophilic exchange on a quaternary ammonium resin. Int J Rad Appl Instrum B 17:273–279

    Article  Google Scholar 

  • Toyama H, Ichise M, Liow JS, Vines DC, Seneca NM, Modell KJ, Seidel J, Green MV, Innis RB (2004) Evaluation of anesthesia effect on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256

    Article  CAS  PubMed  Google Scholar 

  • Vannucci RC, Yager JY, Vannucci SJ (1994) Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 14:279–288

    Article  CAS  PubMed  Google Scholar 

  • Weber WA, Avril N, Schwaiger M (1999) Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkol 175:356–373

    Article  CAS  PubMed  Google Scholar 

  • Westal RE, Reissman S, Dering G (1996) Out-of-hospital cardiac arrests: an 8-year New York City experience. Am J Emerg Med 14:364–368

    Article  Google Scholar 

  • Wu GF, Du ZM, Hu CH, Zheng Z, Zhan C, Ma H, Fang D, Ahmed KT, Laham RJ, Hui JC, Lawson WE (2006) Angiogenic effects of long-term enhanced external counterpulsation in a dog model of myocardial infarction. Am J Physiol Heart Circ Physiol 290:248–254

    Article  Google Scholar 

  • Wu R, Smeele KM, Wyatt E, Ichikawa Y, Eerbeek O, Sun L, Chawla K, Hollmann MW, Nagpal V, Heikkinen S, Laakso M, Jujo K, Wasserstrom JA, Zuurbier CJ, Ardehali H (2011) Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circ Res 108:60–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the NSFC (81272062, 81471832, 81372022, and 81372023); the Science and Technology Foundation of Guangdong Province, China (2012B031800286); the Natural Science Foundation of Guangdong Province (S2013010016799); and the Medical and Health Technology Projects Foundation of Guangzhou City (20141A011005). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author disclosure statement

The authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Additional information

Ying-Qing Li, Xiao-Xing Liao, and Jian-Hua Lu contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Liao, XX., Lu, JH. et al. Assessing the early changes of cerebral glucose metabolism via dynamic 18FDG-PET/CT during cardiac arrest. Metab Brain Dis 30, 969–977 (2015). https://doi.org/10.1007/s11011-015-9658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9658-0

Keywords

Navigation