Skip to main content

Advertisement

Log in

Astrocytic glycogenolysis: mechanisms and functions

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Until the demonstration little more than 20 years ago that glycogenolysis occurs during normal whisker stimulation glycogenolysis was regarded as a relatively uninteresting emergency procedure. Since then, a series of important astrocytic functions has been shown to be critically dependent on glycogenolytic activity to support the signaling mechanisms necessary for these functions to operate. This applies to glutamate formation and uptake and to release of ATP as a transmitter, stimulated by other transmitters or elevated K+ concentrations and affecting not only other astrocytes but also most other brain cells. It is also relevant for astrocytic K+ uptake both during the period when the extracellular K+ concentration is still elevated after neuronal excitation, and capable of stimulating glycogenolytic activity, and during the subsequent undershoot after intense neuronal activity, when glycogenolysis may be stimulated by noradrenaline. Both elevated K+ concentrations and several transmitters, including the β-adrenergic agonist isoproterenol and vasopressin increase free cytosolic Ca2+ concentration in astrocytes, which stimulates phosphorylase kinase so that it activates the transformation of the inactive glycogen phosphorylase a to the active phosphorylase b. Contrary to common belief cyclic AMP plays at most a facilitatory role, and only when free cytosolic Ca2+ concentration is also increased. Cyclic AMP is not increased during activation of glycogenolysis by either elevated K+ concentrations or the stimulation of the serotonergic 5-HT2B receptor. Not all agents that stimulate glycogenolysis do so by directly activating phophorylase kinase—some do so by activating processes requiring glycogenolysis, e.g. for synthesis of glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen B, Rassov A, Westergaard N, Lundgren K (1999) Inhibition of glycogenolysis in primary rat hepatocytes by 1, 4-dideoxy-1,4-imino-D-arabinitol. Biochem J 342:545–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bay V, Butt AM (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60:651–660

    PubMed  Google Scholar 

  • Bekar LK, Walz W (2002) Intracellular chloride modulates A-type potassium currents in astrocytes. Glia 39:207–216

    PubMed  Google Scholar 

  • Bernard PA, Makin CE, Werner HA (2009) Hypoglycemia associated with dexmedetomidine overdose in a child? J Clin Anesth 21:50–53

    CAS  PubMed  Google Scholar 

  • Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115:622–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AM, Sickmann HM, Fosgerau K et al (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79:74–80

    CAS  PubMed  Google Scholar 

  • Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22:205–213

    CAS  PubMed  Google Scholar 

  • Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    PubMed  Google Scholar 

  • Chen Y, Hertz L (1999) Noradrenaline effects on pyruvate decarboxylation: correlation with calcium signaling. J Neurosci Res 58:599–606

    CAS  PubMed  Google Scholar 

  • Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide–vasopressin-sensitive mechanism for volume regulation? Can J Physiol Pharmacol 70:S367–S373

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhao Z, Hertz L (2000) Vasopressin increases [Ca2+]i in differentiated astrocytes by activation of V1b/V3 receptors but has no effect in mature cortical neurons. J Neurosci Res 60:761–766

    CAS  PubMed  Google Scholar 

  • Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci 30:15769–15777

    CAS  PubMed  Google Scholar 

  • Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391:45–51

    CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresquerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22:1476–1489

    CAS  PubMed  Google Scholar 

  • Daisley JN, Gruss M, Rose SP, Braun K (1998) Passive avoidance training and recall are associated with increased glutamate levels in the intermediate medial hyperstriatum ventrale of the day-old chick. Neural Plast 6:53–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87:87–102

    PubMed  Google Scholar 

  • Diaz SL, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L (2012) 5-HT2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17:154–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982) Stimulus-induced changes in extracellular Na+ and Cl concentration in relation to changes in the size of the extracellular space. Exp Brain Res 46:73–84

    CAS  PubMed  Google Scholar 

  • Dietzel I, Heinemann U, Lux HD (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2:25–44

    CAS  PubMed  Google Scholar 

  • DiNuzzo M (2013) Kinetic analysis of glycogen turnover: relevance to human brain 13C NMR spectroscopy. J Cereb Blood Flow Metab 33:1540–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37:2432–2438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du T, Li B, Li H, Li M, Hertz L, Peng L (2010) Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent. J Neurochem 115:1007–1023

    CAS  PubMed  Google Scholar 

  • Du T, Liang C, Li B, Hertz L, Peng L (2014) Chronic fluoxetine administration increases expression of the L-channel gene Cav1.2 in astrocytes from the brain of treated mice and in culture and augments K+-induced increase in [Ca2+]i. Cell Calcium. doi:10.1016/j.ceca.2014.01.002

    PubMed  Google Scholar 

  • Dufour S, Dufour P, Chever O, Vallee R, Amzica F (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194:206–217

    CAS  PubMed  Google Scholar 

  • Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukuda A (2013) Cl homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol 591:3901–3917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elekes O, Venema K, Postema F, Dringen R, Hamprecht B, Korf J (1996) Evidence that stress activates glial lactate formation in vivo assessed with rat hippocampus lactography. Neurosci Lett 208:69–72

    CAS  PubMed  Google Scholar 

  • Enkvist MO, Hämäläinen H, Jansson CC, Kukkonen JP, Hautala R, Courtney MJ, Akerman KE (1996) Coupling of astroglial alpha 2-adrenoreceptors to second messenger pathways. J Neurochem 66:2394–2401

    CAS  PubMed  Google Scholar 

  • Eriksen JL, Gillespie RA, Druse MJ (2000) Effects of in utero ethanol exposure and maternal treatment with a 5-HT1A agonist on S100B-containing glial cells. Brain Res Dev Brain Res 121:133–143

    CAS  PubMed  Google Scholar 

  • Garrison JC, Borland MK (1979) Regulation of mitochondrial pyruvate carboxylation and gluconeogenesis in rat hepatocytes via an alpha-adrenergic, adenosine 3′:5′-monophosphate-independent mechanism. J Biol Chem 254:1129–1133

    CAS  PubMed  Google Scholar 

  • Gibbs M, Hertz L (2014) Serotonin mediation of early memory formation via 5-HT2B receptor-induced glycogenolysis in the day-old chick. Front Pharmacol. doi:10.3389/fphar.2014.00054

  • Gibbs M, Lloyd H, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    CAS  PubMed  Google Scholar 

  • Gibbs ME, Hutchinson D, Hertz L (2008) Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev 32(5):927–944

    Google Scholar 

  • Grisar T, Franck G, Schoffeniels E (1980) Glial control of neuronal excitability in mammals: II. Enzymatic evidence: two molecular forms of the Na+, K+-ATPase in brain. Neurochem Int 2C:311–320

    CAS  PubMed  Google Scholar 

  • Håberg A, Qu H, Haraldseth O, Unsgård G, Sonnewald U (2000) In vivo effects of adenosine A1 receptor agonist and antagonist on neuronal and astrocytic intermediary metabolism studied with ex vivo 13C NMR spectroscopy. J Neurochem 74:327–333

    PubMed  Google Scholar 

  • Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    CAS  PubMed  Google Scholar 

  • Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+-K+-2Cl cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588:4089–4101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    PubMed  Google Scholar 

  • Harik SI, Busto R, Martinez E (1982) Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J Neurosci 2:409–414

    CAS  PubMed  Google Scholar 

  • Henn FA, Haljamae H, Hamberger A (1972) Glial cell function: active control of extracellular K+ concentration. Brain Res 43:437–443

    CAS  PubMed  Google Scholar 

  • Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309

    CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    CAS  PubMed  Google Scholar 

  • Hertz L, Li B, Song D, Ren J, Dong L, Chen Y, Peng L (2012) Astrocytes as a 5-HT2B-mediated SERT-independent SSRI target, slowly altering depression-associated genes and function. Curr Signal Transduct Ther 7:65–80

    CAS  Google Scholar 

  • Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013a) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+, K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertz L, Xu J, Peng L (2013b) Glycogenolysis and purinergic signaling. In: Parpura V, Schousboe A, Verkhratsky A (eds) Glutamate and ATP at interface of metabolism and signaling in the brain, in Advances in neurobiology series, series editor A. Springer-Verlag, Berlin Heidelberg, Schousboe, in press

    Google Scholar 

  • Hertz L, Song D, Li Baoman, Du T, Xu J, Gu L, Chen Y, Peng L (2014) Signal transduction in astrocytes during chronic or acute treatment with drugs (SSRIs; anti-bipolar drugs; GABA-ergic drugs; benzodiazepines) ameliorating mood disorders. J Signal Transduct. doi:10.1155/2014/593934

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    CAS  PubMed  Google Scholar 

  • Hyder F, Rothman DL (2012) Quantitative fMRI and oxidative neuroenergetics. Neuroimage 62:985–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52:3–89

    CAS  PubMed  Google Scholar 

  • Illes P, Verkhratsky A, Burnstock G, Franke H (2012) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 18:422–438

    PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman E, Driscoll B (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J Neurochem 58:258–262

    CAS  PubMed  Google Scholar 

  • Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506

    CAS  PubMed  Google Scholar 

  • Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120

    CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787

    CAS  PubMed  Google Scholar 

  • Kursar JD, Nelson DL, Wainscott DB, Baez M (1994) Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol 46:227–234

    CAS  PubMed  Google Scholar 

  • Lalo U, Verkhratsky A, Pankratov Y (2012) Ionotropic ATP receptors in neuronal-glial communication. Semin Cell Dev Biol 22:220–228

    Google Scholar 

  • Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L (2008) Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology (Berl) 201:443–458

    CAS  Google Scholar 

  • Li B, Zhang S, Li M, Hertz L, Peng L (2010) Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors. Neurochem Int 57:432–439

    CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca2+ influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495

    CAS  PubMed  Google Scholar 

  • Liedtke CM, Cole TS (2002) Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. Biochim Biophys Acta 1589:77–88

    CAS  PubMed  Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44:524–532

    CAS  PubMed  Google Scholar 

  • Lothman E, Lamanna J, Cordingley G, Rosenthal M, Somjen G (1975) Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res 88:15–36

    CAS  PubMed  Google Scholar 

  • Macaulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    CAS  PubMed  Google Scholar 

  • Magistretti PJ (1988) Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diabete Metab 14:237–246

    CAS  PubMed  Google Scholar 

  • Mangia S, Giove F, DiNuzzo M (2012) Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain. Neurochem Res 37:2554–2561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    CAS  PubMed  Google Scholar 

  • McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol. doi:10.3389/fendo.2013.00191

    Google Scholar 

  • Meier SD, Kafitz KW, Rose CR (2008) Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56:1127–1137

    PubMed  Google Scholar 

  • Neary JT, van Breemen C, Forster E, Norenberg LO, Norenberg MD (1988) ATP stimulates calcium influx in primary astrocyte cultures. Biochem Biophys Res Commun 157:1410–1416

    CAS  PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    CAS  PubMed  Google Scholar 

  • Obel LF, Andersen KM, Bak LK, Schousboe A, Waagepetersen HS (2012) Effects of adrenergic agents on intracellular Ca2+ homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling: implications for glutamate neurotransmission and excitotoxicity. Neurotox Res 21:405–417

    CAS  PubMed  Google Scholar 

  • Offermanns S, Simon MI (1995) G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180

    CAS  PubMed  Google Scholar 

  • Öz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE, Seaquist ER (2012) Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab 32:256–263

    PubMed Central  PubMed  Google Scholar 

  • Ozawa E (1972) Activation of muscular phosphorylase b kinase by a minute amount of Ca ion. J Biochem 71:321–331

    CAS  PubMed  Google Scholar 

  • Ozawa E (2011) Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction. Proc Jpn Acad Ser B Phys Biol Sci 87:486–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel AB, Lai JC, Chowdhury GM, Hyder F, Rothman DL, Shulman RG, Behar KL (2014) Direct evidence for activity-dependent glucose phosphorylation in neurons: implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA doi:10.1073/pnas.1403576111

  • Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    CAS  PubMed  Google Scholar 

  • Porter RH, Benwell KR, Lamb H, Malcolm CS, Allen NH, Revell DF, Adams DR, Sheardown MJ (1999) Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br J Pharmacol 128:13–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522:427–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sajjadi FG, Firestein GS (1993) cDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochim Biophys Acta 1179:105–107

    CAS  PubMed  Google Scholar 

  • Sandén N, Thorlin T, Blomstrand F, Persson PA, Hansson E (2000) 5-Hydroxytryptamine2B receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochem Int 36:427–434

    PubMed  Google Scholar 

  • Scemes E, Spray DC (2012) Extracellular K+ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 37:2310–2316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102

    Google Scholar 

  • Seidel JL, Shuttleworth CW (2011) Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience 192:295–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Semplicini A, Serena L, Valle R, Ceolotto G, Felice M, Fontebasso A, Pessina AC (1995) Ouabain-inhibiting activity of aldosterone antagonists. Steroids 60:110–113

    CAS  PubMed  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sickmann HM, Walls AB, Schousboe A, Bounman SD, Waaqepetersen HS (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109:80–86

    CAS  PubMed  Google Scholar 

  • Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bounman SD (2012) Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int 60:267–275

    CAS  PubMed  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349–365

    CAS  PubMed  Google Scholar 

  • Song H, Thompson SM, Blaustein MP (2013) Nanomolar ouabain augments Ca2+ signalling in rat hippocampal neurones and glia. J Physiol 591:1671–1689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorg O, Pellerin L, Stolz M, Beggah S, Magistretti PJ (1995) Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mousecerebral cortical astrocytes. Neurosci Lett 188:109–112

    CAS  PubMed  Google Scholar 

  • Subbarao KV, Hertz L (1990) Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res 536:220–226

    CAS  PubMed  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51:451–461

    CAS  PubMed  Google Scholar 

  • van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    PubMed  Google Scholar 

  • van Ree JM, Hijman R, Jolles J, De Wied D (1985) Vasopressin and related peptides: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 9:551–559

    PubMed  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    CAS  PubMed  Google Scholar 

  • Ververken D, Van Veldhoven P, Proost C, Carton H, De Wulf H (1982) On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices. J Neurochem 38:1286–1295

    CAS  PubMed  Google Scholar 

  • Walls AB, Heimbürger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    CAS  PubMed  Google Scholar 

  • Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36:291–300

    CAS  PubMed  Google Scholar 

  • Walz W, Hertz L (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J Neurochem 39:70–77

    CAS  PubMed  Google Scholar 

  • Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 4:301–304

    CAS  PubMed  Google Scholar 

  • Wang F, Smith NA, Xu Q, Fujita T, Matsuda T, Takano T, Bekar L, Nedergaard M (2012a) Astrocytes modulate neural network activity by Ca2+ -dependent uptake of extracellular K+. Sci Signal 5:ra26

    PubMed Central  PubMed  Google Scholar 

  • Wang F, Xu Q, Wang W, Takano T, Nedergaard M (2012b) Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci U S A 109:7911–7916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia M, Zhu Y (2011) Signaling pathways of ATP-induced PGE2 release in spinal cordastrocytes are EGFR transactivation-dependent. Glia 59:664–674

    PubMed  Google Scholar 

  • Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 83:1443–1451

    CAS  PubMed  Google Scholar 

  • Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    CAS  PubMed  Google Scholar 

  • Xu J, Song D, Bai Q, Hertz L, Peng L (2014a) Basic mechanisms leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochem Res 39:661–667

    Google Scholar 

  • Xu J, Song D, Bai Q, Zhou L, Cai L, Hertz L, Peng L (2014b) Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations. ASN Neuro 6(1), art:e0000x. doi:10.1042/AN200130040

    Google Scholar 

  • Yan E, Li B, Gu L, Hertz L, Peng L (2013) Mechanisms for L-channel-mediated increase in [Ca2+]i and its reduction by anti-bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L-channels. Cell Calcium 54:335–342

    CAS  PubMed  Google Scholar 

  • Yang IH, Tsai YT, Chiu SJ, Liu LT, Lee HH, Hou MF, Hsu WL, Chen BK, Chang WC (2013) Involvement of STIM1 and Orai1 in EGF-mediated cell growth in retinal pigment epithelial cells. J Biomed Sci 20:41

    PubMed Central  PubMed  Google Scholar 

  • Young SZ, Platel JC, Nielsen JV, Jensen NA, Bordey A (2010) GABAA increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Front Cell Neurosci 4:8

    PubMed Central  PubMed  Google Scholar 

  • Zhang X, Peng L, Chen Y, Hertz L (1993) Stimulation of glycogenolysis in astrocytes by fluoxetine, an antidepressant acting like 5-HT. Neuroreport 4:1235–1238

    CAS  PubMed  Google Scholar 

  • Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L (2010) 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional ‘serotonin-specific reuptake inhibitors’. Neuron Glia Biol 6:113–125

    PubMed  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89:7432–7436

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, L., Xu, J., Song, D. et al. Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 30, 317–333 (2015). https://doi.org/10.1007/s11011-014-9536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9536-1

Keywords

Navigation