Skip to main content
Log in

The frequency of the ACE I/D polymorphism in South America: a systematic review and meta-analysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiotensin-converting enzyme (ACE) is a key component of the renin-angiotensin system and plays an important role in homeostasis and maintenance of blood pressure. However, little is known about allele and genotypic frequencies, as well as phenotypic characteristics associated with ACE polymorphism genotypes in South American populations. This study aimed to verify the allelic predominance and genotype frequency of ACE I/D polymorphism in South America and its association with the main diseases and related conditions. We conducted a systematic review considering studies published in the last 25 years available in PubMed, Scielo, LILACS, LIPECS, Coleciona SUS, CUMED, BINACIS, IBECS, and MEDLINE databases, resulting in the inclusion of 121 studies. Quality of the studies was assessed according to the Strengthening the Reporting of Genetic Association (STREGA) guidelines. We mapped the frequency of the ACE I/D polymorphism in South American populations. 8,856 (32.1%) subjects were DD, 13,050 were ID (47.4%), and 5,644 were II (20.5%) carriers. The main associated conditions included systemic arterial hypertension and other cardiovascular conditions, cardiorespiratory or respiratory characteristics, physical activity level, kidney conditions, aging-related diseases, as well as different types of cancers and metabolic conditions. 61.1% of the studies found no significant association between the respective conditions investigated and the ACE I/D polymorphism. Considering DD genotype or D allele, 21.5% of the studies observed negative and 4.9% positive outcomes. Regarding ID genotype, 4.1% of the studies identified negative and 0.8% positive outcomes, and for II genotype or I allele, 4.1% of the results had negative and 10.7% positive associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed in this manuscript are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Dorer FE, Kahn JR, Lentz KE et al (1974) Hydrolysis of bradykinin by angiotensin converting enzyme. Circ Res 34:824–827. https://doi.org/10.1161/01.RES.34.6.824

    Article  CAS  PubMed  Google Scholar 

  2. Tiret L, Rigat B, Visvikis S et al (1992) Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 14:719–727

    Google Scholar 

  3. Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Sequence variation in the human angiotensin converting enzyme. Nat Genet 22:59–62. https://doi.org/10.1038/8760

    Article  CAS  PubMed  Google Scholar 

  4. Castellon R, Hamdi H (2007) Demystifying the ACE polymorphism: from Genetics to Biology. Curr Pharm Des 13:1191–1198. https://doi.org/10.2174/138161207780618902

    Article  CAS  PubMed  Google Scholar 

  5. Almeida SS, Barros CC, Moraes MR et al (2010) Plasma Kallikrein and Angiotensin I-converting enzyme N- and C-terminal domain activities are modulated by the insertion/deletion polymorphism. Neuropeptides 44:139–143. https://doi.org/10.1016/j.npep.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  6. Dias-Filho CAA, Soares-Junior NJS, Bomfim MRQ et al (2021) The effect of family history of Hypertension and polymorphism of the ACE gene (rs1799752) on cardiac autonomic modulation in adolescents. Clin Exp Pharmacol Physiol 48:177–185. https://doi.org/10.1111/1440-1681.13426

    Article  CAS  PubMed  Google Scholar 

  7. Carranza-González L, León-Cachón RBR, González-Zavala MA et al (2018) ACE, APOA5, and MTP Gene Polymorphisms Analysis in relation to triglyceride and insulin levels in Pediatric patients. Arch Med Res 49:94–100. https://doi.org/10.1016/j.arcmed.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Zeng W, li, Yang S, kun, Song N, Chu Ffen (2022) The impact of angiotensin converting enzyme insertion/deletion gene polymorphism on diabetic Kidney Disease: a debatable issue. Nefrologia 42:415–431. https://doi.org/10.1016/j.nefroe.2022.09.004

    Article  PubMed  Google Scholar 

  9. Patel DD, Parchwani DN, Dikshit N, Parchwani T (2022) Analysis of the Pattern, Alliance and Risk of rs1799752 (ACE I/D polymorphism) with Essential Hypertension. Indian J Clin Biochem 37:18–28. https://doi.org/10.1007/s12291-020-00927-0

    Article  CAS  PubMed  Google Scholar 

  10. Wang C, Zhou X, Liu H, Huang S (2020) Three polymorphisms of renin-angiotensin system and preeclampsia risk. J Assist Reprod Genet 37:3121–3142. https://doi.org/10.1007/s10815-020-01971-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu M, Yi J, Tang W (2021) Association between angiotensin converting enzyme gene polymorphism and essential hypertension: A systematic review and meta-analysis. J Renin-Angiotensin-Aldosterone Syst 22(1):1470320321995074. https://doi.org/10.1177/1470320321995074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahimi Z (2012) ACE insertion/deletion (I/D) polymorphism and diabetic Nephropathy. J Nephropathol 1:143–151. https://doi.org/10.5812/nephropathol.8109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mengesha HG, Petrucka P, Spence C, Tafesse TB (2019) Effects of angiotensin converting enzyme gene polymorphism on hypertension in Africa: A meta-analysis and systematic review. PLoS ONE 14:e0211054. https://doi.org/10.1371/journal.pone.0211054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma Y, Tong X, Liu Y et al (2018) ACE gene polymorphism is associated with COPD and COPD with pulmonary Hypertension: a meta-analysis. Int J COPD 13:2435–2446. https://doi.org/10.2147/COPD.S168772

    Article  CAS  Google Scholar 

  15. Chu FF, Yang SK, Zeng WL (2021) The influence of ACE insertion/deletion gene polymorphism on the risk of IgA nephropathy: A debatable topic. Genet Res 2021:e7

    Article  Google Scholar 

  16. Charoen P, Eu-Ahsunthornwattana J, Thongmung N et al (2019) Contribution of four polymorphisms in renin-angiotensin-aldosterone-related genes to hypertension in a thai population. Int J Hypertens 2019:4861081. https://doi.org/10.1155/2019/4861081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krishnan R, Sekar D, karunanithy S, Subramanium S (2016) Association of angiotensin converting enzyme gene insertion/deletion polymorphism with Essential Hypertension in south Indian population. Genes Dis 3:159–163. https://doi.org/10.1016/j.gendis.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pena SDJ, di Pietro G, Fuchshuber-Moraes M et al (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE 6:0017063. https://doi.org/10.1371/journal.pone.0017063

    Article  CAS  ADS  Google Scholar 

  19. Rocha M, Aroman M, Saint, Aardewijn T, Castagné C (2020) 13011 epidemiologic study: focus on skin characteristics across Brazil regions and ethnicities. J Am Acad Dermatol 83:AB114

    Article  Google Scholar 

  20. Wojcik GL, Graff M, Nishimura KK et al (2019) Genetic analyses of diverse populations improves discovery for complex traits. Nature 570:514–518. https://doi.org/10.1038/s41586-019-1310-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peterson R, Kuchenbaecker K, Walters R et al (2019) Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179(3):589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sirugo G, Williams SM, Tishkoff SA (2019) The missing diversity in Human Genetic studies | elsevier enhanced reader. Cell 177:26–31. https://doi.org/10.1016/j.cell.2019.02.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10:105906. https://doi.org/10.1186/s13643-021-01626-4

    Article  Google Scholar 

  24. Little J, Higgins JPT, Ioannidis JPA et al (2009) STrengthening the REporting of genetic association studies (STREGA)-an extension of the strobe statement. PLoS Med 6:0151–0163. https://doi.org/10.1371/journal.pmed.1000022

    Article  Google Scholar 

  25. The Jamovi Project (2022) Jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org

  26. Coelho DB, Pimenta E, Rosse IC et al (2016) Antiotensin-converting enzyme (ACE-I/D) polymorphism frequency in Brazilian soccer players. Appl Physiol Nutr Metab 41:692–694. https://doi.org/10.2134/ael2015.10.0006

    Article  CAS  PubMed  Google Scholar 

  27. Gomes CC, Souza e Sillva TA, Mesquita do Nascimento W et al (2019) Analise das frequencias dos polimorfismos I/D do gene da enzima conversora de angiotensina I (ECA I) e R577X do gene ACTN3 em jogadores de futebol americano. Rev Bras Prescrição E Fisiol do Exerc 13:802–808. https://doi.org/10.11606/t.5.2004.tde-31032004-134559

    Article  Google Scholar 

  28. Oliveira GL, Oliveira TAP, Souza RP et al (2020) Frecuencia Del Polimorfismo Genético ACTN3 R577X y ECA I/D en Atletas Ciegos De Fútbol 5. Int J Morphol 38:1336–1340. https://doi.org/10.4067/s0717-95022020000501336

    Article  Google Scholar 

  29. Ortiz M, Ayala A, Petro JL et al (2020) Evaluation of ACTN3 R577X and ACE I/D polymorphisms in young Colombian athletes: An exploratory research. J Hum Sport Exerc 17:626–639. https://doi.org/10.14198/jhse.2022.173.14

    Article  Google Scholar 

  30. Pereira AC, Mota GA, Benseñor I et al (2001) Effect of race, genetic population structure, and genetic models in two-locus association studies: clustering of functional renin-angiotensin system gene variants in Hypertension association studies. Brazilian J Med Biol Res 34:1421–1428. https://doi.org/10.1590/s0100-879x2001001100008

    Article  CAS  Google Scholar 

  31. Salgueirosa F, de Rodrigues M, Seniski P GG, et al (2017) ACTN3 R577X and ACE I/D genotype frequencies of Professional Soccer players in Brazil. J Exerc Physiol 8:11–25

    Google Scholar 

  32. Santoro GF, de Mello KD, de Netto O et al (2019) The influence of ACE I/D gene polymorphism in amateur American football athletes in Brazil. Rev Bras Med do Esporte 25:460–463. https://doi.org/10.1590/1517-869220192506198909

    Article  Google Scholar 

  33. Roco A, Quiñones LA, Sepúlveda P et al (2015) Prevalence of seven cardiovascular-related genetic polymorphisms in a Chilean mestizo healthy population. Acta Cardiol 70:528–535. https://doi.org/10.1080/ac.70.5.3110513

    Article  PubMed  Google Scholar 

  34. Zorrilla P, Mimbacas A, Gascue C et al (2006) Prevalencia Del polimorfismo I/D Del gen de la enzima convertidora de angiotensina (ECA) en la población de Montevideo. Rev Med Del Uruguay 22:17–21

    Google Scholar 

  35. Miranda-Vilela AL, Akimoto AK, Alves PCZ et al (2010) Evidence for an association between haptoglobin and MnSOD (Val9Ala) gene polymorphisms in Essential Hypertension based on a Brazilian case-control study. Genet Mol Res 9:2166–2175. https://doi.org/10.4238/vol9-4gmr973

    Article  CAS  PubMed  Google Scholar 

  36. Jalil JE, Ocaranza MP, Oliveri C et al (2004) Neutral endopeptidase and angiotensin I converting enzyme insertion/deletion gene polymorphism in humans. J Hum Hypertens 18:119–125. https://doi.org/10.1038/sj.jhh.1001646

    Article  CAS  PubMed  Google Scholar 

  37. Oscanoa TJ, Cieza EC, Lizaraso-Soto FA et al (2020) Angiotensin-converting enzyme (ACE) genetic variation and longevity in Peruvian older people: a cross-sectional study. Ann Hum Biol 47:309–312. https://doi.org/10.1080/03014460.2020.1748227

    Article  PubMed  Google Scholar 

  38. Lizaraso FS, Medina FP, Salazar MC et al (2002) Evaluación De La Prevalencia De Los genes Polimórficos De La Enzima Convertidora De Angiotensina Y Del Angiotensinógeno en Hipertensos Primarios De La Población Peruana. Horiz méd 2:6–26

    Google Scholar 

  39. de Lima SG, de Albuquerque M, de FPM JRM et al (2012) Exaggerated blood pressure response during exercise treadmill testing: functional and hemodynamic features, and risk factors. Hypertens Res 35:733–738. https://doi.org/10.1038/hr.2012.14

    Article  PubMed  Google Scholar 

  40. Pereira AC, Mota GFA, Cunha RS et al (2003) Angiotensinogen 235T Allele Dosage is Associated with blood pressure phenotypes. Hypertension 41:25–30. https://doi.org/10.1161/01.hyp.0000047465.97065.15

    Article  CAS  PubMed  Google Scholar 

  41. de Almada BVP, Braun V, Nassur BA et al (2010) Association of Hypertension with polymorphism of angiotensin converting enzyme in elderly persons. Rev Soc Bras Clín Méd 8:320–322

    Google Scholar 

  42. Ribeiro BB, Neto PE dos, Nascimento S JE, et al (2017) Análise Hierarquizada Da Hipertensão arterial Sistêmica com a Variante Polimórfica do Gene Da ECA E Outros Fatores De Risco em idosos. Int J Cardiovasc Sci 30:52–60

    Google Scholar 

  43. Yugar-Toledo JC, Martin JFV, Krieger JE et al (2011) Gene variation in resistant Hypertension: Multilocus Analysis of the angiotensin 1-Converting enzyme, Angiotensinogen, and endothelial nitric oxide synthase genes. DNA Cell Biol 30:555–564. https://doi.org/10.1089/dna.2010.1156

    Article  CAS  PubMed  Google Scholar 

  44. Bonfim-Silva R, Guimarães LO, Santos JS et al (2016) Case–control association study of polymorphisms in the angiotensinogen and angiotensin-converting enzyme genes and coronary artery Disease and systemic artery Hypertension in african-brazilians and caucasian-brazilians. J Genet 95:63–69. https://doi.org/10.1007/s12041-015-0599-5

    Article  CAS  PubMed  Google Scholar 

  45. de Moraes VN, Bueno Junior CR (2017) Lack of association between ACE ID genetic polymorphism and Diabetes or Hypertension in brazilians aged from 50 to 70 years old. Med (Ribeirão Preto) 50:109–113. https://doi.org/10.11606/issn.2176-7262.v50i2p109-113

    Article  Google Scholar 

  46. Pinheiro DS, Santos RS, Jardim PCBV et al (2019) The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to Hypertension: a genetic association study in Brazilian patients. PLoS ONE 14:e0221248–e0221248. https://doi.org/10.1371/journal.pone.0221248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bautista LE, Vargas CI, Orostegui M, Gamarra G (2008) Population-based case-control study of renin-angiotensin system genes polymorphisms and Hypertension among hispanics. Hypertens Res 31:401–408. https://doi.org/10.1291/hypres.31.401

    Article  CAS  PubMed  Google Scholar 

  48. Cosenso-Martin LN, Vaz-de-Melo RO, Pereira LR et al (2015) Angiotensin-converting enzyme insertion/deletion polymorphism, 24-h blood pressure profile and left ventricular hypertrophy in hypertensive individuals: a cross-sectional study. Eur J Med Res 20:74. https://doi.org/10.1186/s40001-015-0166-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiménez PM, Conde C, Casanegra A et al (2007) Association of ACE genotype and predominantly diastolic Hypertension: a preliminary study. J Renin-Angiotensin-Aldosterone Syst 8:42–44. https://doi.org/10.3317/jraas.2007.006

    Article  PubMed  Google Scholar 

  50. Montrezol FT, Marinho R, Mota GdeFAda et al (2019) ACE gene plays a key role in reducing blood pressure in the Hyperintensive Elderly after Resistance Training. J Strength Cond Res 33:1119–1129. https://doi.org/10.1519/jsc.0000000000002355

    Article  PubMed  Google Scholar 

  51. Vilela-Martin JF, Vaz-de-Melo RO, Cosenso-Martin LN et al (2013) Renin Angiotensin System Blockage Associates with Insertion/Deletion polymorphism of angiotensin-converting enzyme in patients with Hypertensive Emergency. DNA Cell Biol 32:541–548. https://doi.org/10.1089/dna.2012.1951

    Article  CAS  PubMed  Google Scholar 

  52. Freire IV, Casotti CA, Ribeiro ÍJS et al (2018) Daily sodium intake influences the relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and Hypertension in older adults. J Clin Hypertens 20:541–550. https://doi.org/10.1111/jch.13224

    Article  CAS  Google Scholar 

  53. Franken RA, Bellesso M, Cavazin AM et al (2004) Associação do polimorfismo do gene da enzima conversora da angiotensina com dados ecocardiográficos em jovens normotensos filhos de hipertensos. Rev Assoc Med Bras 50:62–67. https://doi.org/10.1590/s0104-42302004000100037

    Article  PubMed  Google Scholar 

  54. Ajala AR, Almeida SS, Rangel M et al (2012) Association of ACE Gene Insertion/Deletion polymorphism with Birth Weight, blood pressure levels, and ACE activity in healthy children. Am J Hypertens 25:827–832. https://doi.org/10.1038/ajh.2012.50

    Article  CAS  PubMed  Google Scholar 

  55. Freitas SRS, Cabello PH, Moura-Neto RS et al (2007) Análise combinada de fatores genéticos e ambientais na hipertensão essencial em um município da região Amazônica. Arq Bras Cardiol 88:447–451. https://doi.org/10.1590/s0066-782x2007000400014

    Article  PubMed  Google Scholar 

  56. Moraes CF, Souza ER, Souza VC et al (2008) A common polymorphism in the renin angiotensin system is associated with differential outcome of antihypertensive pharmacotherapy prescribed to Brazilian older women. Clin Chim Acta 396:70–75. https://doi.org/10.1016/j.cca.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  57. da Silva SJ, Rassi S, Pereira A (2017) Angiotensin-Converting Enzyme ID Polymorphism in Patients with Heart Failure Secondary to Chagas Disease. Arq Bras Cardiol 109:307–312. https://doi.org/10.5935/abc.20170137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koyama RG, Drager LF, Lorenzi-Filho G et al (2009) Reciprocal interactions of obstructive sleep apnea and Hypertension associated with ACE I/D polymorphism in males. Sleep Med 10:1107–1111. https://doi.org/10.1016/j.sleep.2008.12.012

    Article  PubMed  Google Scholar 

  59. Velloso EP, Vieira R, Cabral AC et al (2007) Reduced plasma levels of angiotensin-(1–7) and renin activity in preeclamptic patients are associated with the angiotensin I- converting enzyme deletion/deletion genotype. Brazilian J Med Biol Res 40:583–590. https://doi.org/10.1590/s0100-879x2007000400018

    Article  CAS  Google Scholar 

  60. Galão AO, de Souza LH, Pinheiro da Costa BE et al (2004) Angiotensin-converting enzyme gene polymorphism in preeclampsia and normal pregnancy. Am J Obstet Gynecol 191:821–824. https://doi.org/10.1016/j.ajog.2004.01.047

    Article  CAS  PubMed  Google Scholar 

  61. Lopes ACS, Perucci LO, Gontijo Evangelista FC et al (2019) Association among ACE, ESR1 polymorphisms and preeclampsia in Brazilian pregnant women. Mol Cell Probes 45:43–47. https://doi.org/10.1016/j.mcp.2019.04.004

    Article  CAS  Google Scholar 

  62. Lemes VAF, Neves AL, Guazzelli IC et al (2013) Angiotensin converting enzyme insertion/deletion polymorphism is associated with increased adiposity and blood pressure in obese children and adolescents. Gene 532:197–202. https://doi.org/10.1016/j.gene.2013.09.065

    Article  CAS  PubMed  Google Scholar 

  63. Araújo MA, Goulart LR, Cordeiro ER et al (2005) Genotypic interactions of renin–angiotensin system genes in Myocardial Infarction. Int J Cardiol 103:27–32. https://doi.org/10.1016/j.ijcard.2004.07.009

    Article  PubMed  Google Scholar 

  64. Buck PC, Fernandes F, Arteaga E et al (2009) Association of angiotensin-converting enzyme activity and polymorphism with echocardiographic measures in familial and nonfamilial hypertrophic cardiomyopathy. Brazilian J Med Biol Res 42:717–721. https://doi.org/10.1590/s0100-879x2009005000001

    Article  CAS  Google Scholar 

  65. Cardona-Barreto A, Giraldo AM, Loango N et al (2011) Relación entre la enzima convertidora de angiotensina, polimorfismo I/D, y obstrucción coronaria en una población del Quindío. Colombia Univ Sci 16:193. https://doi.org/10.11144/javeriana.sc16-3.rbac

    Article  CAS  Google Scholar 

  66. Evangelista FCG, Rios DRA, Ribeiro DD et al (2015) Lack of association between potential prothrombotic genetic risk factors and arterial and venous Thrombosis. Genet Mol Res 14:9585–9594. https://doi.org/10.4238/2015.august.14.21

    Article  CAS  PubMed  Google Scholar 

  67. Inacio J, Filho LG, Journal GV-B (2004) Frequencias genotipicas e alelicas do gene do polimorfismo da ECA I/D na populacao brasileira.  Biosci J 20:47–51

    Google Scholar 

  68. Fischer SCPM, Pinto SP, Lins LC do AS, et al (2018) Association of Multiple Genetic Variants with the extension and severity of coronary artery Disease. Arq Bras Cardiol 110:16–23. https://doi.org/10.5935/abc.20170177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mansur AP, Annicchino-Bizzacchi J, Favarato D et al (2000) Angiotensin-converting enzyme and apolipoproteins genes polymorphism in coronary artery Disease. Clin Cardiol 23:335–340. https://doi.org/10.1002/clc.4960230506

    Article  CAS  PubMed  Google Scholar 

  70. Rosales A, Jaramillo P, Lanas F, Salazar LA (2009) Polimorfismo ins/Del Del gen de la enzima convertidora de angiotensina-I en individuos chilenos con enfermedad coronaria documentada por angiografía. Rev Costarr Cardiol 1(1):20–27

    Google Scholar 

  71. Albuquerque FN, Brandão AA, Silva DA et al (2014) Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling. Arq Bras Cardiol 102:70–79

    PubMed  PubMed Central  Google Scholar 

  72. Cuoco MAR, Pereira AC, de Freitas HFG et al (2005) Angiotensin-converting enzyme gene deletion polymorphism modulation of onset of symptoms and survival rate of patients with Heart Failure. Int J Cardiol 99:97–103. https://doi.org/10.1016/j.ijcard.2003.12.026

    Article  PubMed  Google Scholar 

  73. Cuoco MAR, Pereira AC, de Mota G et al (2008) Polimorfismo genético, terapia farmacológica e função cardíaca seqüencial em pacientes com insuficiência cardíaca. Arq Bras Cardiol 90:274–279

    Article  Google Scholar 

  74. Duque GS, da Silva DA, de Albuquerque FN et al (2016) Influence of angiotensin-converting-enzyme gene polymorphism on echocardiographic data of patients with ischemic Heart Failure. Arq Bras Cardiol 107:446–454. https://doi.org/10.5935/abc.20160145

    Article  PubMed  PubMed Central  Google Scholar 

  75. de Oliveira FF, Berretta JM, de Almeida Junior GV et al (2019) Pharmacogenetic analyses of variations of measures of cardiovascular risk in Alzheimer’s Dementia. Indian J Med Res 150:261–271. https://doi.org/10.4103/ijmr.IJMR_1209_17

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bautista LE, Ardila ME, Gamarra G et al (2004) Angiotensin-converting enzyme gene polymorphism and risk of Myocardial Infarction in Colombia. Med Sci Monit 10:CR473–CR479

    CAS  PubMed  Google Scholar 

  77. Loango N, Vargas R, Osorio JH et al (2010) Frecuencia aumentada del alelo D y El Genotipo DD Del gen de la enzima convertidora de angiotensina en pacientes con un primer evento coronario. Univ Sci 15:77. https://doi.org/10.11144/javeriana.sc15-1.ifot

    Article  CAS  Google Scholar 

  78. Munhoz TP, Scheibe RM, Schmitt VM (2005) Angiotensin converting enzyme (ACE) DD genotype: relationship with venous thrombosis. Rev Bras Hematol Hemoter 27:87–90. https://doi.org/10.1590/s1516-84842005000200006

    Article  Google Scholar 

  79. Jaramillo MI, Genes L, Tovar RJ et al (2013) Insertion/deletion polymorphism of the angiotensin converting enzyme gene and coronary artery Disease in the population of Monteria, Cordoba. Rev Colomb Cardiol 20:278–284. https://doi.org/10.1016/s0120-5633(13)70070-6

    Article  Google Scholar 

  80. Jalil JE, Marı A, Braun S et al (1999) Prevalence of the angiotensin I converting enzyme Insertion/Deletion polymorphism, plasma angiotensin converting enzyme activity, and left ventricular Mass in a normotensive Chilean Population. Am J Hypertens 12:697–704. https://doi.org/10.1016/S0895-7061(99)00040-0

    Article  CAS  PubMed  Google Scholar 

  81. Alves SMM, Alvarado-Arnês LE, Cavalcanti M, de da GA M et al (2020) Influence of angiotensin-converting enzyme Insertion/Deletion gene polymorphism in progression of Chagas Heart Disease. Rev Soc Bras Med Trop 53:e20190488–e20190488. https://doi.org/10.1590/0037-8682-0488-2019

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pascuzzo-Lima C, Mendible JC, Bonfante-Cabarcas RA (2009) Angiotensin-converting enzyme Insertion/Deletion gene polymorphism and progression of Chagas’ Cardiomyopathy. Rev Española Cardiol (English Ed 62:320–322. https://doi.org/10.1016/s1885-5857(09)71564-6

    Article  Google Scholar 

  83. Almeida JA, Boullosa DA, Pardono E et al (2012) A influência do genótipo da ECA sobre a aptidão cardiovascular de jovens do sexo masculino moderadamente ativos. Arq Bras Cardiol 98:315–320. https://doi.org/10.1590/s0066-782x2012005000029

    Article  CAS  PubMed  Google Scholar 

  84. Bueno S, Pasqua LA, de Araújo G et al (2016) The Association of ACE genotypes on cardiorespiratory variables related to physical fitness in healthy men. PLoS ONE 11:e0165310–e0165310. https://doi.org/10.1371/journal.pone.0165310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verlengia R, Rebelo AC, Crisp AH et al (2014) Lack of Association between ACE Indel Polymorphism and Cardiorespiratory Fitness in physically active and sedentary Young women. Asian J Sports Med 5:e22768–e22768. https://doi.org/10.5812/asjsm.22768

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bigham AW, Kiyamu M, León-Velarde F et al (2008) Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol 9:167–178. https://doi.org/10.1089/ham.2007.1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cruces P, Díaz F, Puga A et al (2012) Angiotensin-converting enzyme insertion/deletion polymorphism is associated with severe hypoxemia in pediatric ARDS. Intensive Care Med 38:113–119. https://doi.org/10.1007/s00134-011-2381-3

    Article  CAS  PubMed  Google Scholar 

  88. Alves CR, Fernandes T, Lemos JR Jr et al (2018) Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: interactions with ACE I/D polymorphism and association with vascular reactivity. J Renin Angiotensin Aldosterone Syst 19:1470320318761725–1470320318761725. https://doi.org/10.1177/1470320318761725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moreira SR, Nóbrega OT, Santana HAP et al (2018) Impact of ACE I/D gene polymorphism on blood pressure, heart rate variability and nitric oxide responses to the aerobic exercise in hypertensive elderly. Rev Andaluza Med Del Deport 11:57–62. https://doi.org/10.1016/j.ramd.2015.10.001

    Article  Google Scholar 

  90. Tamburus NY, Verlengia R, Kunz VC et al (2018) Apolipoprotein B and angiotensin-converting enzyme polymorphisms and aerobic interval training: randomized controlled trial in coronary artery Disease patients. Brazilian J Med Biol Res = Rev Bras Pesqui Medicas e Biol 51:e6944–e6944. https://doi.org/10.1590/1414-431x20186944

    Article  CAS  Google Scholar 

  91. Freire IV, Machado M, Ribeiro ÍJS et al (2015) The D allele of angiotensin-converting enzyme gene is associated with greater hemodynamic response to resistance exercises. J Renin-Angiotensin-Aldosterone Syst 16:1251–1259. https://doi.org/10.1177/1470320314540733

    Article  CAS  PubMed  Google Scholar 

  92. Lima R, Leite T, Pereira R et al (2011) ACE and ACTN3 genotypes in older women: muscular phenotypes. Int J Sports Med 32:66–72. https://doi.org/10.1055/s-0030-1267229

    Article  CAS  PubMed  Google Scholar 

  93. Pereira A, Costa AM, Izquierdo M et al (2013) ACE I/D and ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes in older women in response to a muscle power training stimuli. Age (Dordr) 35:1949–1959. https://doi.org/10.1007/s11357-012-9461-3

    Article  CAS  PubMed  Google Scholar 

  94. Mota MR, Oliveira RJ, Terra DF et al (2013) Acute and chronic effects of resistance exercise on blood pressure in elderly women and the possible influence of ACE I/D polymorphism. Int J Gen Med 6:581–587. https://doi.org/10.2147/IJGM.S40628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tibana RA, Nascimento DC, Bottaro M et al (2014) Dissociação do polimorfismo do gene da enzima conversora de angiotensina com a força, volume e qualidade muscular em mulheres sedentárias. ConScientiae Saúde 13:411–420. https://doi.org/10.5585/conssaude.v13n3.4690

    Article  Google Scholar 

  96. Akimoto AK, Miranda-Vilela AL, Alves PCZ et al (2010) Evaluation of gene polymorphisms in exercise-induced oxidative stress and damage. Free Radic Res 44:322–331. https://doi.org/10.3109/10715760903494176

    Article  CAS  PubMed  Google Scholar 

  97. Dionísio TJ, Thiengo CR, Brozoski DT et al (2017) The influence of genetic polymorphisms on performance and cardiac and hemodynamic parameters among Brazilian soccer players. Appl Physiol Nutr Metab 42:596–604. https://doi.org/10.1139/apnm-2016-0608

    Article  CAS  PubMed  Google Scholar 

  98. João AF, Caniuqueo Vargas A, Hernández Mosqueira C et al (2015) Gene polymorphism ACTN3 and ACE in selected gymnasts in Brazil and Japan. Int J Morphol 33:262–266. https://doi.org/10.4067/s0717-95022015000100041

    Article  Google Scholar 

  99. Jalil JE, Córdova S, Ocaranza MP et al (2002) Angiotensin I-converting enzyme insertion/deletion polymorphism and adrenergic response to exercise in hypertensive patients. Med Sci Monit 8(8):566–571

    Google Scholar 

  100. Sierra APR, Lima GHO, da Silva ED et al (2019) Angiotensin-converting enzyme related-polymorphisms on inflammation, muscle and myocardial damage after a Marathon race. Front Genet 10:984. https://doi.org/10.3389/fgene.2019.00984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miranda-Vilela AL, Lordelo GS, Akimoto AK et al (2011) Genetic polymorphisms influence runners’ responses to the dietary ingestion of antioxidant supplementation based on pequi oil (Caryocar brasiliense Camb.): a before-after study. Genes Nutr 6:369–395. https://doi.org/10.1007/s12263-011-0217-y

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alves M, de Souza e Silva NA, Salis LHA et al (2014) Survival and predictive factors of lethality in hemodialysis: D/I polymorphism of the angiotensin I-converting enzyme and of the angiotensinogen M235T genes. Arq Bras Cardiol 103:209–219. https://doi.org/10.5935/abc.20140105

    Article  PubMed  PubMed Central  Google Scholar 

  103. de Carvalho SS, Silva Simõese, de Sabino AC P, et al (2016) Influence of ACE I/D polymorphism on circulating levels of plasminogen activator inhibitor 1, D-Dimer, ultrasensitive C-Reactive protein and transforming growth factor β1 in patients undergoing hemodialysis. PLoS ONE 11:e0150613–e0150613. https://doi.org/10.1371/journal.pone.0150613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ribeiro LR, Flores de Oliveira J, Bueno Orcy R et al (2018) Exploring the complexity: the interplay between the angiotensin-converting enzyme insertion/deletion polymorphism and the sympathetic response to hemodialysis. Am J Physiol Circ Physiol 315:H1002–H1011. https://doi.org/10.1152/ajpheart.00162.2018

    Article  CAS  Google Scholar 

  105. Amorim CEN, Nogueira E, Almeida SS et al (2013) Clinical impact of an angiotensin I-converting enzyme insertion/deletion and kinin B2 receptor + 9/-9 polymorphisms in the prognosis of renal transplantation. bchm 394:369–377. https://doi.org/10.1515/hsz-2012-0314

    Article  CAS  Google Scholar 

  106. Biselli PM, Abbud-Filho M, Ferreira-Baptista MAS et al (2006) Angiotensin-converting enzyme gene polymorphism in chronic allograft Nephropathy. Transpl Proc 38:1327–1328. https://doi.org/10.1016/j.transproceed.2006.02.112

    Article  CAS  Google Scholar 

  107. Canani LH, Costa LA, Crispim D et al (2005) The presence of allele D of angiotensin-converting enzyme polymorphism is associated with diabetic Nephropathy in patients with less than 10 years duration of type 2 Diabetes. Diabet Med 22:1167–1172. https://doi.org/10.1111/j.1464-5491.2005.01622.x

    Article  CAS  PubMed  Google Scholar 

  108. Reis AAdaS, Silva EG, de Santos K et al (2021) Do ACE and ACE2 Polymorphisms Influence in the Pathogenesis of Diabetic Nephropathy? Res Sq. https://doi.org/10.21203/rs.3.rs-936006/v1

    Article  Google Scholar 

  109. Forero DA, Pinzón J, Arboleda GH et al (2006) Analysis of common polymorphisms in angiotensin-converting enzyme and apolipoprotein E genes and human longevity in Colombia. Arch Med Res 37:890–894. https://doi.org/10.1016/j.arcmed.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  110. Fortuna PC, Chielle EO (2017) Análise do Polimorfismo I/D Do Gene Da Enzima Conversora De Angiotensina I (ECA) em Uma População Idosa De Maués, AM, E Sua Relação Com A Longevidade. Periódicos UNOESC, pp 2010–2012

  111. Camelo D, Arboleda G, Yunis JJ et al (2004) Angiotensin-converting enzyme and alpha-2-macroglobulin gene polymorphisms are not associated with Alzheimer’s Disease in Colombian patients. J Neurol Sci 218:47–51. https://doi.org/10.1016/j.jns.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  112. Benitez BA, Forero DA, Arboleda GH et al (2010) Exploration of genetic susceptibility factors for Parkinson’s Disease in a south American sample. J Genet 89:229–232. https://doi.org/10.1007/s12041-010-0030-1

    Article  PubMed  Google Scholar 

  113. Frattini IR, Ferrari GD, Chiaratto T et al (2016) Efeito De Polimorfismos genéticos Da ECA E Da ACTN3 na capacidade e na incidência de quedas em idosas. J Phys Educ 27:2713. https://doi.org/10.4025/jphyseduc.v27i1.2713

    Article  Google Scholar 

  114. Schuch JB, Constantin PC, da Silva VK et al (2014) ACE polymorphism and use of ACE inhibitors: effects on memory performance. Age (Dordr) 36:9646. https://doi.org/10.1007/s11357-014-9646-z

    Article  CAS  PubMed  Google Scholar 

  115. George AJ, Thomas WG, Hannan RD (2010) The renin–angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 10:745–759. https://doi.org/10.1038/nrc2945

    Article  CAS  PubMed  Google Scholar 

  116. Corrêa SAA, de Noronha SMR, Nogueira-de-Souza NC et al (2009) Association between the angiotensin-converting enzyme (insertion/deletion) and angiotensin II type 1 receptor (A1166C) polymorphisms and Breast cancer among Brazilian women. J Renin-Angiotensin-Aldosterone Syst 10:51–58. https://doi.org/10.1177/1470320309102317

    Article  Google Scholar 

  117. Castro AF, Loango N, Ruíz B, Landázuri P (2011) Asociación entre Los Polimorfismos De Los genes de la enzima convertidora de angiotensina y Los receptores AT1R y AT2R y El cáncer de mama. Estudio De casos y controles. Rev Colomb Obstet Ginecol 62:37–44. https://doi.org/10.18597/rcog.229

    Article  Google Scholar 

  118. Correa-Noronha SAA, Ribeiro de Noronha SM, Alecrim C et al (2012) Association of angiotensin-converting enzyme I gene I/D polymorphism with endometrial but not with Ovarian cancer. Gynecol Endocrinol 28:889–891. https://doi.org/10.3109/09513590.2012.683060

    Article  CAS  PubMed  Google Scholar 

  119. Marques D, Ferreira-Costa LR, Ferreira-Costa LL et al (2017) Association of insertion-deletions polymorphisms with Colorectal cancer risk and clinical features. World J Gastroenterol 23:6854–6867. https://doi.org/10.3748/wjg.v23.i37.6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Almeida SS, Corgosinho FC, Amorim CE et al (2017) Different metabolic responses induced by long-term interdisciplinary therapy in obese adolescents related to ACE I/D polymorphism. J Renin Angiotensin Aldosterone Syst 18:1470320317703451–1470320317703451. https://doi.org/10.1177/1470320317703451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Costa PB, Aranalde LC, Correia PE et al (2021) Combination of ACTN3 R577X and ACE I/D polymorphisms as a tool for prediction of obesity risk in children. Int J Obes 45:337–341. https://doi.org/10.1038/s41366-020-00668-3

    Article  CAS  Google Scholar 

  122. Foschini D, Araújo RC, Bacurau RFP et al (2010) Treatment of obese adolescents: the influence of periodization models and ACE genotype. Obesity 18:766–772. https://doi.org/10.1038/oby.2009.247

    Article  CAS  PubMed  Google Scholar 

  123. Lelis D, de Pereira F, Krieger AC JE, et al (2019) Polymorphisms of the renin-angiotensin system are not associated with overweight and obesity in a general adult population. Arch Endocrinol Metab. https://doi.org/10.20945/2359-3997000000155

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cardoso RL, Nogueira AR, Salis LHA et al (2008) The association of ACE gene D/I polymorphism with cardiovascular risk factors in a population from Rio De Janeiro. Brazilian J Med Biol Res 41:512–518. https://doi.org/10.1590/s0100-879x2008000600013

    Article  CAS  Google Scholar 

  125. Jalil JE, Córdova S, Piddo AM et al (2000) Actividad plasmática de la enzima convertidora de angiotensina I en población chilena normal y relación con El Genotipo inserción/deleción de la enzima convertidora de angiotensina. Rev Chil Cardiol 19:7–16

    Google Scholar 

  126. Silva Rdo, Pardini C, Kater DP CE (2006) Síndrome dos ovários policísticos, síndrome metabólica, risco cardiovascular e o papel dos agentes sensibilizadores da insulina. Arq Bras Endocrinol & Metabol 50:281–290. https://doi.org/10.1590/s0004-27302006000200014

    Article  Google Scholar 

  127. Cintra MTR, Balarin MAS, Tanaka SCSV et al (2018) Polycystic ovarian syndrome: rs1799752 polymorphism of ACE gene. Rev Assoc Med Bras 64:1017–1022. https://doi.org/10.1590/1806-9282.64.11.1017

    Article  PubMed  Google Scholar 

  128. de Azevedo MJ, Dalmáz CA, Caramori MLA et al (2002) ACE and PC-1 gene polymorphisms in normoalbuminuric type 1 diabetic patients. J Diabetes Complications 16:255–262. https://doi.org/10.1016/s1056-8727(01)00185-4

    Article  PubMed  Google Scholar 

  129. Bonini-Domingos AC, Bonini-Domingos CR, Iacida EC et al (2014) Angiotensin converting enzyme polymorphism in type 2 Diabetes Mellitus. Biomarkers Genomic Med 6:99–104. https://doi.org/10.1016/j.bgm.2014.06.001

    Article  CAS  Google Scholar 

  130. Pirozzi FF, Belini Junior E, Okumura JV et al (2018) The relationship between of ACE I/D and the MTHFR C677T polymorphisms in the pathophysiology of type 2 Diabetes Mellitus in a population of Brazilian obese patients. Arch Endocrinol Metab 62:21–26. https://doi.org/10.20945/2359-3997000000005

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wollinger LM, Dal Bosco SM, Rempel C et al (2015) Role of ACE and AGT gene polymorphisms in genetic susceptibility to Diabetes Mellitus type 2 in a Brazilian sample. Genet Mol Res 14:19110–19116. https://doi.org/10.4238/2015.december.29.20

    Article  CAS  PubMed  Google Scholar 

  132. Andersen ML, Guindalini C, Santos-Silva R et al (2010) Angiotensin-converting enzyme polymorphism and Erectile Dysfunction complaints in the Brazilian Population. J Sex Med 7:2791–2797. https://doi.org/10.1111/j.1743-6109.2010.01796.x

    Article  PubMed  Google Scholar 

  133. Aranalde LCR, Pederzoli BS, Marten T et al (2016) The ACTN3 R577X polymorphism affects the lipid profile and the prognosis of nutritional intervention in HIV-positive patients. Nutr Res 36:564–574. https://doi.org/10.1016/j.nutres.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  134. Cutipa WJ, Terán M, de Cabrera LÁ et al (2017) Asociación de los polimorfismos genéticos de la Enzima Convertidora de la Angiotensina con Lupus Eritematoso Sistémico en pacientes lúpicos bolivianos. Revista CON-CIENCIA 5:57–66

    Google Scholar 

  135. Fernandes M, de O, Azevêdo LM, Dolabella SS, Pardono E (2015) Influência do polimorfismo I/D do gene da eca na HPE De Jovens normotensos. Rev Bras Med do Esporte 21:308–312. https://doi.org/10.1590/1517-869220152104137628

    Article  Google Scholar 

  136. Gadelha A, Yonamine CM, Ota VK et al (2015) ACE I/D genotype-related increase in ACE plasma activity is a better predictor for schizophrenia diagnosis than the genotype alone. Schizophr Res 164:109–114. https://doi.org/10.1016/j.schres.2015.01.044

    Article  PubMed  Google Scholar 

  137. Meira-Lima IV, Pereira AC, Mota GFA et al (2000) Angiotensinogen and angiotensin converting enzyme gene polymorphisms and the risk of bipolar affective disorder in humans. Neurosci Lett 293:103–106. https://doi.org/10.1016/s0304-3940(00)01512-3

    Article  CAS  PubMed  Google Scholar 

  138. Wajchenberg M, Luciano R, de Araújo P RC, et al (2013) Polimorfismo do gene Da Eca E Da α-actinina 3 na escoliose idiopática do adolescente. Acta Ortopédica Bras 21:170–174. https://doi.org/10.1590/s1413-78522013000300009

    Article  Google Scholar 

  139. Luciano RP, Wajchenberg M, Almeida SS et al (2016) Genetic ACE I/D and ACTN3 R577X polymorphisms and adolescent idiopathic scoliosis. Genet Mol Res 15(4):gmr15048959. https://doi.org/10.4238/gmr15048959

    Article  CAS  Google Scholar 

  140. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362:971–982. https://doi.org/10.1016/s0140-6736(03)14368-1

    Article  CAS  PubMed  Google Scholar 

  141. Shinjo SK, Uno M, Oba-Shinjo SM, Marie SKN (2015) Angiotensin-converting enzyme insertion/deletion gene polymorphism is associated with dermatomyositis. J Renin-Angiotensin-Aldosterone Syst 16:666–671. https://doi.org/10.1177/1470320314524995

    Article  CAS  PubMed  Google Scholar 

  142. Irie GRF, Balarin MAS, Ruiz-Cintra MT et al (2017) ACE I/D polymorphism in Brazilian women with endometriosis. Polimorfismo ACE I/D em Mulh. Bras com Endometriose 38:1–5

    Google Scholar 

  143. Giovanella J, Wollinger LM, Capra L et al (2020) Diet-gene interaction: effects of polymorphisms in the ACE, AGT and BDKRB2 genes and the consumption of sodium, potassium, calcium, and magnesium on blood pressure of normotensive adult individuals. Mol Cell Biochem 476:1211–1219. https://doi.org/10.1007/s11010-020-03983-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA).

Funding

This study received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

R.G.T. and S.S.A. designed the study. R.G.T., H.M., M.A.P.S., and T.J.T. performed the data acquisition. R.G.T., V.O.S. and P.L.G.B. performed the data analysis. R.G.T., V.O.S., M.A.P.S., and C.P.F. drafted and revised the manuscript. S.S.A. supervised the study. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sandro Soares Almeida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 395.4 kb)

Supplementary material 2 (XLSX 23.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisano, R.G., Matias, H., de Jesus Teani, T. et al. The frequency of the ACE I/D polymorphism in South America: a systematic review and meta-analysis. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04923-9

Keywords

Navigation