Skip to main content
Log in

Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin–integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 β phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO production, which activates MMP-2. This enzyme degrades β-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of β-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3β and MPTP pore with preservation of mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Bell RM, Basalay M, Bøtker HE, Beikoghli Kalkhoran S, Carr RD, Cunningham J, Davidson SM, England TJ, Giesz S, Ghosh AK, Golforoush P, Gourine AV, Hausenloy DJ, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Lukhna K, Ntsekhe M, Ovize M, Salama AD, Vilahur G, Walker JM, Yellon DM (2022) Remote ischaemic conditioning: defining critical criteria for success-report from the 11th Hatter Cardiovascular Workshop. Basic Res Cardiol 117(1):39. https://doi.org/10.1007/s00395-022-00947-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Böning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schön J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K, RIPHeart Study Collaborators (2015) A Multicenter Trial of Remote Ischemic Preconditioning for Heart Surgery. N Engl J Med. 373(15):1397–407. https://doi.org/10.1056/NEJMoa1413579

    Article  CAS  PubMed  Google Scholar 

  3. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373(15):1408–17. https://doi.org/10.1056/NEJMoa1413534)

    Article  CAS  PubMed  Google Scholar 

  4. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister AF (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883. https://doi.org/10.1161/01.cir.0000043806.51912.9b

    Article  CAS  PubMed  Google Scholar 

  5. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomized controlled trial. Lancet 370:575–579. https://doi.org/10.1016/S0140-6736(07)61296-3

    Article  PubMed  Google Scholar 

  6. Candilio L, Malik A, Ariti C, Barnard M, Di SC, Lawrence D, Hayward M, Yap J, Roberts N, Sheikh A, Kolvekar S, Hausenloy DJ, Yellon DM (2015) Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart 10:185–192. https://doi.org/10.1136/heartjnl-2014-306178

    Article  Google Scholar 

  7. Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, Price V, Tsagakis K, Neuhäuser M, Peters J, Jakob H, Heusch G (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-Centre randomised, double-blind, controlled trial. Lancet 382:597–604. https://doi.org/10.1016/S0140-6736(13)61450-6

    Article  PubMed  Google Scholar 

  8. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schon J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K, Collaborators RIS (2015) A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407. https://doi.org/10.1056/NEJMoa1413579

    Article  CAS  PubMed  Google Scholar 

  9. Rodríguez M, Cai WJ, Kostin S, Lucchesi BR, Schaper J (2005) Ischemia depletes dystrophin and inhibits protein synthesis in the canine heart: mechanisms of myocardial ischemic injury. J Mol Cell Cardiol 38(5):723–733. https://doi.org/10.1016/j.yjmcc.2005.02.019

    Article  CAS  PubMed  Google Scholar 

  10. Buchholz B, Perez V, Siachoque N, Miksztowicz V, Berg G, Rodríguez M, Donato M, Gelpi RJ (2014) Dystrophin proteolysis: a potential target for MMP-2 and its prevention by ischemic preconditioning. Am J Physiol Heart Circ Physiol 307(1):H88-96. https://doi.org/10.1152/ajpheart.00242.2013

    Article  CAS  PubMed  Google Scholar 

  11. Schwarz ER, Somoano Y, Hale SL, Kloner RA (2000) Share. What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat? J Thromb Thrombolysis 10(2):181–7. https://doi.org/10.1023/a:1018770711705

    Article  CAS  PubMed  Google Scholar 

  12. Ale-Agha N, Jakobs P, Goy C, Zurek M, Rosen J, Dyballa-Rukes N et al (2021) Mitochondrial telomerase reverse transcriptase protects from myocardial ischemia/reperfusion injury by improving complex I composition and function. Circulation 144(23):1876–1890. https://doi.org/10.1161/CIRCULATIONAHA.120.051923

    Article  CAS  PubMed  Google Scholar 

  13. Kleinbongard P, Gedik N, Kirca M, Stoian L, Frey U, Zandi A et al (2018) Mitochondrial and contractile function of human right atrial tissue in response to remote ischemic conditioning. J Am Heart Assoc 7(15):e009540. https://doi.org/10.1161/JAHA.118.009540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skyschally A, Kleinbongard P, Lieder H, Gedik N, Stoian L, Amanakis G et al (2018) Humoral transfer and intramyocardial signal transduction of protection by remote ischemic perconditioning in pigs, rats, and mice. Am J Physiol Heart Circ Physiol 315(1):H159–H172. https://doi.org/10.1152/ajpheart.00152.2018

    Article  CAS  PubMed  Google Scholar 

  15. Mastitskaya S, Basalay M, Hosford PS, Ramage AG, Gourine A, Gourine AV (2016) Identifying the Source of a Humoral Factor of Remote (Pre) Conditioning Cardioprotection. PLoS One 11(2):e0150108. https://doi.org/10.1371/journal.pone.0150108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donato M, Goyeneche MA, Garces M, Marchini T, Pérez V, Del Mauro J, Höcht C, Rodríguez M, Evelson P, Gelpi RJ (2016) Myocardial triggers involved in activation of remote ischaemic preconditioning. Exp Physiol 101(6):708–716. https://doi.org/10.1113/EP085535

    Article  CAS  PubMed  Google Scholar 

  17. Donato M, Buchholz B, Rodríguez M, Pérez V, Inserte J, García-Dorado D, Gelpi RJ (2013) Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol 98(2):425–34. https://doi.org/10.1113/expphysiol.2012.066217

    Article  PubMed  Google Scholar 

  18. Patel HH, Moore J, Hsu AK, Gross GJ (2002) Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 34(10):1317–1323. https://doi.org/10.1006/jmcc.2002.2072

    Article  CAS  PubMed  Google Scholar 

  19. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114(10):1601–10. https://doi.org/10.1161/CIRCRESAHA.114.303822

    Article  CAS  PubMed  Google Scholar 

  20. Schoemaker RG, Van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278(5):H1571–H1576. https://doi.org/10.1152/ajpheart.2000.278.5.H1571

    Article  CAS  PubMed  Google Scholar 

  21. Gedik N, Maciel L, Schulte C, Skyschally A, Heusch G, Kleinbongard P (2017) Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci. 13(2):448–458. https://doi.org/10.5114/aoms.2016.61789

    Article  CAS  PubMed  Google Scholar 

  22. Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM (2016) Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol 111(4):50. https://doi.org/10.1007/s00395-016-0568-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilson DGS, Tinker A, Iskratsch T (2022) The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 5(1):1022. https://doi.org/10.1038/s42003-022-03980-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kyoi S, Otani H, Hamano A, Matsuhisa S, Akita Y, Fujiwara H, Hattori R, Imamura H, Kamihata H, Iwasaka T (2006) Dystrophin is a possible end-target of ischemic preconditioning against cardiomyocyte oncosis during the early phase of reperfusion. Cardiovasc Res 70(2):354–363. https://doi.org/10.1016/j.cardiores.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Hughes BG, Schulz R (2014) Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 109(4):424. https://doi.org/10.1007/s00395-014-0424-y

    Article  CAS  PubMed  Google Scholar 

  26. Dalal S, Shook PL, Singh M, Singh K (2023) Post-ischemic cardioprotective potential of exogenous ubiquitin in myocardial remodeling late after ischemia/reperfusion injury. Life Sci 312:121216. https://doi.org/10.1016/j.lfs.2022.121216

    Article  CAS  PubMed  Google Scholar 

  27. Bassiouni W, Ali MAM, Schulz R (2021) Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 288(24):7162–7182. https://doi.org/10.1111/febs.15701

    Article  CAS  PubMed  Google Scholar 

  28. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85(3):413–423. https://doi.org/10.1093/cvr/cvp268

    Article  CAS  PubMed  Google Scholar 

  29. Donato M, D’Annunzio V, Buchholz B, Miksztowicz V, Carrión CL, Valdez LB, Zaobornyj T, Schreier L, Wikinski R, Boveris A, Berg G, Gelpi RJ (2010) Role of matrix metalloproteinase-2 in the cardioprotective effect of ischaemic postconditioning. Exp Physiol 95(2):274–281. https://doi.org/10.1113/expphysiol.2009.049874

    Article  CAS  PubMed  Google Scholar 

  30. Horowitz JD, Chong CR (2020) Matrix metalloproteinase-2 activation: critical to myocardial contractile dysfunction following ischaemia-reperfusion. Cardiovasc Res 116(5):876–878. https://doi.org/10.1093/cvr/cvz271

    Article  CAS  PubMed  Google Scholar 

  31. Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM (2005) Dystrophic heart failure blocked by membrane sealant poloxamer. Nature 436(7053):1025–1029. https://doi.org/10.1038/nature03844

    Article  CAS  PubMed  Google Scholar 

  32. Townsend D, Yasuda S, McNally E, Metzger JM (2011) Distinct pathophysiological mechanisms of cardiomyopathy in hearts lacking dystrophin or the sarcoglycan complex. FASEB J 25(9):3106–3114. https://doi.org/10.1096/fj.10-178913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dexter JR, Mikako H, Elizabeth M, Jason K (2022) Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol S0022–2828(22):00563–00566. https://doi.org/10.1016/j.yjmcc.2022.11.003

    Article  CAS  Google Scholar 

  34. Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C et al (2017) Mechanistic role of mPTP in ischemia-reperfusion injury. Adv Exp Med Biol 982:169–189. https://doi.org/10.1007/978-3-319-55330-6_9

    Article  CAS  PubMed  Google Scholar 

  35. Heusch G (2020) Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17(12):773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  36. Jensen RV, Stottrup NB, Kristiansen SB, Botker HE (2012) Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol 107:285. https://doi.org/10.1007/s00395-012-0285-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Agency for Scientific and Technological Promotion [ANPCyT, PICT 2017-1447], the University of Buenos Aires [UBACyT 20020150100105BA].

Author information

Authors and Affiliations

Authors

Contributions

EPB, TZ, TM and BB performed the experiments. VDA, PE, RJG and MD wrote the main manuscript text. EPB, TZ and MG prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Martín Donato.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tamara Zaobornyj, Verónica D’Annunzio, Bruno Buchholz, Timoteo Marchini, Pablo Evelson, Ricardo J. Gelpi and Martín Donato are Members of the National Council of Scientific and Technological Research (CONICET).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, E.P., Zaobornyj, T., Garces, M. et al. Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04849-2

Keywords

Navigation