Skip to main content

Advertisement

Log in

Possible role of LCZ696 in atherosclerosis: new inroads and perspective

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available in the manuscript.

References

  1. Nalivaeva NN, Zhuravin IA, Turner AJ (2020) Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 1(192):111363

    Article  Google Scholar 

  2. Wang Y, Zhou R, Lu C, Chen Q, Xu T, Li D (2019) Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J Am Heart Assoc 8(13):e012272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Solomon SD, McMurray JJ, Anand IS, Ge J, Lam CS, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM (2019) Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381(17):1609–1620

    Article  CAS  PubMed  Google Scholar 

  4. Pardossi-Piquard R, Dunys J, Yu G, StGeorge-Hyslop P, Alves da Costa C, Checler F (2006) Neprilysin activity and expression are controlled by nicastrin. J Neurochem 97(4):1052–6

    Article  CAS  PubMed  Google Scholar 

  5. Bayes-Genis A, Prickett TC, Richards AM, Barallat J, Lupón J (2016) Soluble neprilysin retains catalytic activity in heart failure. J Heart Lung Transplant 35(5):684–685

    Article  PubMed  Google Scholar 

  6. Bayés-Genís A, Barallat J, Galán A, De Antonio M, Domingo M, Zamora E, Urrutia A, Lupón J (2015) Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients. J Am Coll Cardiol 65(7):657–665

    Article  PubMed  Google Scholar 

  7. Goliasch G, Pavo N, Zotter-Tufaro C, Kammerlander A, Duca F, Mascherbauer J, Bonderman D (2016) Soluble neprilysin does not correlate with outcome in heart failure with preserved ejection fraction. Eur J Heart Fail 18(1):89–93

    Article  CAS  PubMed  Google Scholar 

  8. Vodovar N, Seronde MF, Laribi S, Gayat E, Lassus J, Januzzi JL, Boukef R, Nouira S, Manivet P, Samuel JL, Logeart D (2015) Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. JACC 3(8):629–36

    PubMed  Google Scholar 

  9. Mishra D, Singh S, Narayan G (2016) Role of B cell development marker CD10 in cancer progression and prognosis. Mol Biol Int. https://doi.org/10.1155/2016/4328697

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reynaud D, Lefort N, Manie E, Coulombel L, Levy Y (2003) In vitro identification of human pro-B cells that give rise to macrophages, natural killer cells, and T cells. Blood 101(11):4313–4321

    Article  CAS  PubMed  Google Scholar 

  11. Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Tzankov A, Wen W, Liu WM, Kahl BS, d’Amore ES, Montes-Moreno S (2012) Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 26(9):2103–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Revuelta-López E, Núñez J, Gastelurrutia P, Cediel G, Januzzi JL, Ibrahim NE, Emdin M, VanKimmenade R, Pascual-Figal D, Núñez E, Gommans F (2020) Neprilysin inhibition, endorphin dynamics, and early symptomatic improvement in heart failure: a pilot study. ESC Heart Fail 7(2):559–566

    Article  PubMed  PubMed Central  Google Scholar 

  13. Libby P (2021) The changing landscape of atherosclerosis. Nature 592(7855):524–533

    Article  CAS  PubMed  Google Scholar 

  14. Fok PW, Lanzer P (2018) Media sclerosis drives and localizes atherosclerosis in peripheral arteries. PLoS One 13(10):e0205599

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roh JW, Kwon BJ, Ihm SH, Lim S, Park CS, Chang K, Chung WS, Kim DB, Kim SR, Kim HY (2019) Predictors of significant coronary artery disease in patients with cerebral artery atherosclerosis. Cerebrovasc Dis 48(3–6):226–235

    Article  PubMed  Google Scholar 

  16. Lovshin JA, Bjornstad P, Lovblom LE, Bai JW, Lytvyn Y, Boulet G, Farooqi MA, Santiago S, Orszag A, Scarr D, Weisman A (2018) Atherosclerosis and microvascular complications: results from the canadian study of longevity in type 1 diabetes. Diabetes Care 41(12):2570–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schipper HS, de Ferranti S (2022) Atherosclerotic cardiovascular risk as an emerging priority in pediatrics. Pediatrics. https://doi.org/10.1542/peds.2022-057956

    Article  PubMed  Google Scholar 

  18. Vergallo R, Crea F (2020) Atherosclerotic plaque healing. N Engl J Med 383(9):846–857

    Article  CAS  PubMed  Google Scholar 

  19. Shi P, Ji H, Zhang H, Yang J, Guo R, Wang J (2020) circANRIL reduces vascular endothelial injury, oxidative stress and inflammation in rats with coronary atherosclerosis. Exp Ther Med 20(3):2245–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M (2019) The effects of oxidative stress on the development of atherosclerosis. Biol Chem 400(6):711–732

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira HC, Vercesi AE (2020) Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 1(71):100840

    Article  Google Scholar 

  22. Hartley A, Haskard D, Khamis R (2019) Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis–Novel insights and future directions in diagnosis and therapy. Trends Cardiovasc Med 29(1):22–26

    Article  CAS  PubMed  Google Scholar 

  23. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, Saini AK (2020) Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev 15:2020

    Google Scholar 

  24. Jinnouchi H, Sato Y, Sakamoto A, Cornelissen A, Mori M, Kawakami R, Gadhoke NV, Kolodgie FD, Virmani R, Finn AV (2020) Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis 1(306):85–95

    Article  Google Scholar 

  25. Ito F, Ito T (2020) High-density lipoprotein (Hdl) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants 9(5):362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gill PK, Dron JS, Hegele RA (2021) Genetics of hypertriglyceridemia and atherosclerosis. Curr Opin Cardiol 36(3):264–271

    Article  PubMed  Google Scholar 

  27. Hegele RA, Borén J, Ginsberg HN, Arca M, Averna M, Binder CJ, Calabresi L, Chapman MJ, Cuchel M, von Eckardstein A, Frikke-Schmidt R (2020) Rare dyslipidaemias, from phenotype to genotype to management: a European atherosclerosis society task force consensus statement. Lancet Diabetes Endocrinol 8(1):50–67

    Article  CAS  PubMed  Google Scholar 

  28. Jinnouchi H, Guo L, Sakamoto A, Torii S, Sato Y, Cornelissen A, Kuntz S, Paek KH, Fernandez R, Fuller D, Gadhoke N (2020) Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci 77(10):1919–1932

    Article  CAS  PubMed  Google Scholar 

  29. Poznyak AV, Grechko AV, Orekhova VA, Chegodaev YS, Wu WK, Orekhov AN (2020) Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 9(3):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho F, Watson A, Elbatreek MH, Kleikers PW, Khan W, Sourris KC, Dai A, Jha J, Schmidt HH, Jandeleit-Dahm KA (2022) Endothelial reactive oxygen-forming NADPH oxidase 5 is a possible player in diabetic aortic aneurysm but not atherosclerosis. Sci Rep 12(1):1

    Article  Google Scholar 

  31. Pejenaute Á, Cortés A, Marqués J, Montero L, Beloqui Ó, Fortuño A, Martí A, Orbe J, Zalba G (2020) NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. Int J Mol Sci 21(4):1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye Z, Guo H, Wang L, Li Y, Xu M, Zhao X, Song X, Chen Z, Huang R (2022) GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J Mol Cell Cardiol 1(165):54–63

    Article  Google Scholar 

  33. Wang C, Wang H, Zhao Z, Xiao S, Zhao Y, Duan C, Gao L, Li S, Wang J (2019) Pediococcus acidilactici AS185 attenuates early atherosclerosis development through inhibition of lipid regulation and inflammation in rats. J Funct Foods 1(60):103424

    Article  Google Scholar 

  34. He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, Jin J, Ji L, Willard B, Mathew AV, Chen YE (2018) Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol 1(15):228–242

    Article  Google Scholar 

  35. Zhang H, Liu G, Zhou W, Zhang W, Wang K, Zhang J (2019) Neprilysin inhibitor–angiotensin II receptor blocker combination therapy (sacubitril/valsartan) suppresses atherosclerotic plaque formation and inhibits inflammation in apolipoprotein E-deficient Mice. Sci Rep 9(1):1–7

    Google Scholar 

  36. Suematsu Y, Ideishi A, Tashiro K, Miura SI (2021) Angiotensin receptor-neprilysin inhibitor suppressed cardiac dysfunction by angiogenesis in mice model of atherosclerosis. J Hypertens 1(39):e191

    Article  Google Scholar 

  37. Chua SK, Lai WT, Chen LC, Hung HF (2021) The antihypertensive effects and safety of LCZ696 in patients with hypertension: a systemic review and meta-analysis of randomized controlled trials. J Clin Med 10(13):2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ibrahim NE, McCarthy CP, Shrestha S, Gaggin HK, Mukai R, Szymonifka J, Apple FS, Burnett JC, Iyer S, Januzzi JL (2019) Effect of neprilysin inhibition on various natriuretic peptide assays. J Am Coll Cardiol 73(11):1273–1284

    Article  CAS  PubMed  Google Scholar 

  39. Vodovar N, Seronde MF, Laribi S, GREAT Network et al (2015) Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. JACC Heart Fail 3(8):629–636

    Article  PubMed  Google Scholar 

  40. Cleland JG, Swedberg K (1998) Lack of efficacy of neutral endopeptidase inhibitor ecadotril in heart failure. The international ecadotril multi-centre dose-ranging study investigators. Lancet 351(9116):1657–1658

    Article  CAS  PubMed  Google Scholar 

  41. Cleland JG, Swedberg K (1998) Lack of efficacy of neutral endopeptidase inhibitor ecadotril in heart failure. The Lancet 351(9116):1657–1658

    Article  CAS  Google Scholar 

  42. Voors AA, Gori M, Liu LC, Claggett B, Zile MR, Pieske B, McMurray JJ, Packer M, Shi V, Lefkowitz MP, Solomon SD (2015) Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 17(5):510–517

    Article  CAS  PubMed  Google Scholar 

  43. Judge P, Haynes R, Landray MJ, Baigent C (2015) Neprilysin inhibition in chronic kidney disease. Nephrol Dial Transplant 30(5):738–743

    Article  CAS  PubMed  Google Scholar 

  44. Lillyblad MP (2015) Dual angiotensin receptor and neprilysin inhibition with sacubitril/valsartan in chronic systolic heart failure: understanding the new PARADIGM. Ann Pharmacother 49(11):1237–1251

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, He Q, Mo DC, Chen L, Lu JL, Li RX, Huang J (2022) The angiotensin receptor and neprilysin inhibitor, LCZ696, in heart failure: a meta-analysis of randomized controlled trials. Medicine 101(41):e30904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi V, Senni M, Streefkerk H, Modgill V, Zhou W, Kaplan A (2018) Angioedema in heart failure patients treated with sacubitril/valsartan (LCZ696) or enalapril in the PARADIGM-HF study. Int J Cardiol 1(264):118–123

    Article  Google Scholar 

  47. Menendez JT (2016) The mechanism of action of LCZ696. Card Fail Rev 2(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R, Maahs S, Ksander G, Rigel DF, Jeng AY, Lin TH (2010) Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor—neprilysin inhibitor (ARNi). J Clin Pharmacol 50(4):401–414

    Article  CAS  PubMed  Google Scholar 

  49. Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M (2015) Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131(1):54–61

    Article  CAS  PubMed  Google Scholar 

  50. Langenickel TH, Dole WP (2012) Angiotensin receptor-neprilysin inhibition with LCZ696: a novel approach for the treatment of heart failure. Drug Discov Today 9(4):e131–e139

    Google Scholar 

  51. Kobalava ZD, Pavlikova EP, Averkov OA, Merai I, Babaeva LA, Amirbegishvili IA, Kotovskaya YV, Moiseev VS (2015) First Experience of clinical application of LCZ696 an AT1-angiotensin receptors and neprilysin inhibitor in patients with chronic heart failure and reduced ejection fraction. Kardiologiia 55(7):14–25

    Article  PubMed  Google Scholar 

  52. Sutanto H, Dobrev D, Heijman J (2021) Angiotensin receptor-neprilysin inhibitor (ARNI) and cardiac arrhythmias. Int J Mol Sci 22(16):8994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nikolic M, Srejovic I, Jovic J, Sretenovic J, Jeremic J, Cekerevac I, Simovic S, Djokovic D, Muric N, Stojic V, Bolevich SS. (2022) Sacubitril/valsartan in Heart Failure and Beyond—From Molecular Mechanisms to Clinical Relevance. Reviews in Cardiovascular Medicine.

  54. Valentim Goncalves A, Pereira-da-Silva T, Galrinho A, Rio P, Moura Branco L, Soares R, Ilhao Moreira R et al (2020) C-reactive protein reduction with sacubitril-valsartan treatment in heart failure patients. Am J Cardiovasc Dis 10:174–181

    PubMed  PubMed Central  Google Scholar 

  55. Ge Q, Zhao L, Ren XM, Ye P, Hu ZY (2019) LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Expe Biol Med 244:1028–1039

    Article  CAS  Google Scholar 

  56. Butts B, Gary RA, Dunbar SB, Butler J (2015) The importance of NLRP3 inflammasome in heart failure. J Card Fail 21:586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Okada M, Matsuzawa A, Yoshimura A, Ichijo H (2014) The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem 289:32926–32936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li X, Zhu Q, Wang Q, Zhang Q, Zheng Y, Wang L et al (2020) Protection of Sacubitril/Valsartan against pathological cardiac remodeling by inhibiting the NLRP3 inflammasome after relief of pressure overload in mice. Cardiovasc Drugs Ther 34:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuttolomondo A, Di Raimondo D, Pecoraro R, Arnao V, Pinto A, Licata G (2012) Atherosclerosis as an inflammatory disease. Curr Pharm Des 18(28):4266–4288

    Article  CAS  PubMed  Google Scholar 

  60. Ou HC, Chou WC, Hung CH, Chu PM, Hsieh PL, Chan SH, Tsai KL (2019) Galectin-3 aggravates ox-LDL-induced endothelial dysfunction through LOX-1 mediated signaling pathway. Environ Toxicol 34(7):825–835

    Article  CAS  PubMed  Google Scholar 

  61. Wu G, Zhu Q, Zeng J, Gu X, Miao Y, Xu W, Lv T, Song Y (2019) Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB. J Thorac Dis 11(11):4816

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R, Polykratis A, Kollias G, de Winther MP, Pasparakis M (2008) Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. Cell Metab 8(5):372–383

    Article  CAS  PubMed  Google Scholar 

  63. Mallavia B, Recio C, Oguiza A, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, Lopez-Franco O, Schindler S, Depping R, Egido J, Gomez-Guerrero C (2013) Peptide inhibitor of NF-κB translocation ameliorates experimental atherosclerosis. Am J Pathol 182(5):1910–1921

    Article  CAS  PubMed  Google Scholar 

  64. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Current Drug Targets-Inflamm Allergy 4(3):281–286

    Article  CAS  Google Scholar 

  65. Tabata T, Mine S, Kawahara C, Okada Y, Tanaka Y (2003) Monocyte chemoattractant protein-1 induces scavenger receptor expression and monocyte differentiation into foam cells. Biochem Biophys Res Commun 305(2):380–385

    Article  CAS  PubMed  Google Scholar 

  66. Akhter N, Wilson A, Thomas R, Al-Rashed F, Kochumon S, Al-Roub A, Arefanian H, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S (2021) Ros/tnf-α crosstalk triggers the expression of il-8 and mcp-1 in human monocytic thp-1 cells via the nf-κb and erk1/2 mediated signaling. Int J Mol Sci 22(19):10519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abedimanesh N, Motlagh B, Abedimanesh S, Bathaie SZ, Separham A, Ostadrahimi A (2020) Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: a randomized placebo-controlled clinical trial. Phytother Res 34(5):1114–1122

    Article  CAS  PubMed  Google Scholar 

  68. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol 233(3):2116–2132

    Article  CAS  PubMed  Google Scholar 

  69. Djurić T, Stanković A, Končar I, Radak D, Davidović L, Alavantić D, Živković M (2011) Association of MMP-8 promoter gene polymorphisms with carotid atherosclerosis: preliminary study. Atherosclerosis 219(2):673–678

    Article  PubMed  Google Scholar 

  70. Basurto L, Gregory MA, Hernández SB, Sánchez-Huerta L, Martínez AD, Manuel-Apolinar L, Avelar FJ, Alonso LA, Sánchez-Arenas R (2019) Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women. Exp Gerontol 1(124):110624

    Article  Google Scholar 

  71. Jacinto TA, Meireles GS, Dias AT, Aires R, Porto ML, Gava AL, Vasquez EC, Pereira TM, Campagnaro BP, Meyrelles SS (2018) Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis. Biol Res 51(1):1–3

    Article  Google Scholar 

  72. Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ (2018) Concept and connotation of oxidative stress in preeclampsia. J Lab Physicians 10(03):276–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD (2019) Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxid Med Cell Longev. https://doi.org/10.1155/2019/8563845

    Article  PubMed  PubMed Central  Google Scholar 

  74. Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NA, Alexiou A, Batiha GE (2022) Neutrophil Extracellular Traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int Immunopharmacol 6:108516

    Article  Google Scholar 

  75. Poznyak AV, Grechko AV, Orekhova VA, Khotina V, Ivanova EA, Orekhov AN (2020) NADPH oxidases and their role in atherosclerosis. Biomedicines 8(7):206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hussien NR, Al-Niemi MS, Al-Kuraishy HM, Al-Gareeb AI (2021) Statins and Covid-19: the neglected front of bidirectional effects. J Pak Med Assoc 71(Suppl 8):S133–S136

    Google Scholar 

  77. Manea SA, Vlad ML, Fenyo IM, Lazar AG, Raicu M, Muresian H, Simionescu M, Manea A (2020) Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol 1(28):101338

    Article  Google Scholar 

  78. Lixia G, Haiyun Z, Xia Z (2021) The clinical effects of resveratrol on atherosclerosis treatment and its effect on the expression of NADPH oxidase complex genes in vascular smooth muscle cell line. Cell Mol Biol (Noisy-le-grand) 67(3):148–152

    Article  PubMed  Google Scholar 

  79. Zhang Y, Murugesan P, Huang K, Cai H (2020) NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 17(3):170–194

    Article  CAS  PubMed  Google Scholar 

  80. Al-Thomali AW, Al-Kuraishy HM, Al-Gareeb AI, K. Al-buhadiliy A, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GE. (2022) Role of neuropilin 1 in COVID-19 patients with acute ischemic stroke. Biomedicines. 10(8):2032

  81. Sun Y, Lu Y, Saredy J, Wang X, Drummer C IV, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X (2020) ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 1(37):101696

    Article  Google Scholar 

  82. Imran M, Hassan MQ, Akhtar MS, Rahman O, Akhtar M, Najmi AK (2019) Sacubitril and valsartan protect from experimental myocardial infarction by ameliorating oxidative damage in Wistar rats. Clin Exp Hypertens 41(1):62–69

    Article  CAS  PubMed  Google Scholar 

  83. Croteau D, Qin F, Chambers JM, Kallick E, Luptak I, Panagia M, Pimentel DR, Siwik DA, Colucci WS (2020) Differential effects of sacubitril/valsartan on diastolic function in mice with obesity-related metabolic heart disease. Basic Transl Sci 5(9):916–927

    Google Scholar 

  84. Nna VU, Abu Bakar AB, Ahmad A, Eleazu CO, Mohamed M (2019) Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: combined protective effects of malaysian propolis and metformin. Antioxidants 8(10):465

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang X, Bai M (2021) CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovasc Disord 21(1):1–4

    Google Scholar 

  86. Peng S, Lu XF, Qi YD, Li J, Xu J, Yuan TY, Wu XY, Ding Y, Li WH, Zhou GQ, Wei Y (2020) LCZ696 ameliorates oxidative stress and pressure overload-induced pathological cardiac remodeling by regulating the Sirt3/MnSOD pathway. Oxid Med Cell Longev. https://doi.org/10.1155/2020/9815039

    Article  PubMed  PubMed Central  Google Scholar 

  87. Trivedi RK, Polhemus DJ, Li Z, Yoo D, Koiwaya H, Scarborough A, Goodchild TT, Lefer DJ (2018) Combined angiotensin receptor–neprilysin inhibitors improve cardiac and vascular function via increased no bioavailability in heart failure. J Am Heart Assoc 7(5):e008268

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schulz E, Gori T, Münzel T (2011) Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 34(6):665–673

    Article  CAS  PubMed  Google Scholar 

  89. Seki T, Goto K, Kansui Y, Ohtsubo T, Matsumura K, Kitazono T (2017) Angiotensin II receptor–neprilysin inhibitor sacubitril/valsartan improves endothelial dysfunction in spontaneously hypertensive rats. J Am Heart Assoc 6(10):e006617

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gao A, Wang Y, Gao X, Tian W (2021) LCZ696 ameliorates lipopolysaccharide-induced endothelial injury. Aging (Albany NY) 13(7):9582

    Article  CAS  PubMed  Google Scholar 

  91. Kockx MM, Herman AG (2000) Apoptosis in atherosclerosis: beneficial or detrimental. Cardiovasc Res 45(3):736–746

    Article  CAS  PubMed  Google Scholar 

  92. Shan R et al (2021) Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacol Res 166:105169

    Article  CAS  PubMed  Google Scholar 

  93. Paone S et al (2019) Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 76(6):1093–1106

    Article  CAS  PubMed  Google Scholar 

  94. Kim Nam-Ho, Kang Peter M (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40(7):299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xia Y et al (2017) LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J Mol Cell Cardiol 108:138–148

    Article  CAS  PubMed  Google Scholar 

  96. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X (2019) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 1(20):247–260

    Article  Google Scholar 

  98. Suzuki K et al (2021) Pulse pressure, prognosis, and influence of sacubitril/valsartan in heart failure with preserved ejection fraction. Hypertension 77(2):546–556

    Article  CAS  PubMed  Google Scholar 

  99. Packer Milton (2018) Augmentation of glucagon-like peptide-1 receptor signalling by neprilysin inhibition: potential implications for patients with heart failure. Eur J Heart Fail 20(6):973–977

    Article  CAS  PubMed  Google Scholar 

  100. García RD, Ramirez JM, Peral de Bruno M, Miatello RM, Renna NF. Dual ARB/NEP Inhibition with LCZ696 improved endothelial regeneration in an experimental model of metabolic syndrome.

  101. Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lungnier C (2020) Renin-Angiotensin system and fibrinolytic pathway in COVID-19: one-way skepticism. Biomed Biotechnol Res J (BBRJ) 4(5):33

    Google Scholar 

  102. Lugnier C, Al-Kuraishy HM, Rousseau E (2021) PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem Pharmacol 1(185):114431

    Article  Google Scholar 

  103. Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS (2020) Irbesartan attenuates gentamicin-induced nephrotoxicity in rats through modulation of oxidative stress and endogenous antioxidant capacity. Int J Prevent Med 11(3):200–205

    Google Scholar 

  104. Grote K, Drexler H, Schieffer B (2004) Renin–angiotensin system and atherosclerosis. Nephrol Dial Transplant 19(4):770–773

    Article  CAS  PubMed  Google Scholar 

  105. Schmidt-Ott KM, Kagiyama S, Phillips MI (2000) The multiple actions of angiotensin II in atherosclerosis. Regul Pept 93(1–3):65–77

    Article  CAS  PubMed  Google Scholar 

  106. Liu X, Gao RW, Li M, Si CF, He YP, Wang M, Yang Y, Zheng QY, Wang CY (2016) The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in Celastrol against angiotensin II-mediated HepG2 cell proliferation. Apoptosis 21(11):1315–1326

    Article  CAS  PubMed  Google Scholar 

  107. Jansen T, Kröller-Schön S, Schönfelder T, Foretz M, Viollet B, Daiber A, Oelze M, Brandt M, Steven S, Kvandová M, Kalinovic S (2018) α1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 114(14):1883–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Husain K, Hernandez W, Ansari RA, Ferder L (2015) Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 6(3):209

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wu Y, Liu Y, Zhang L, Wen L, Xie Y (2022) Aconiti lateralis radix praeparata total alkaloids exert anti-RA effects by regulating NF-κB and JAK/STAT signaling pathways and promoting apoptosis. Front Pharmacol 1:13

    Google Scholar 

  110. Ohishi M, Dusting GJ, Fennessy PA, Mendelsohn FA, Li XC, Zhuo JL (2010) Increased expression and co-localization of ACE, angiotensin II AT1 receptors and inducible nitric oxide synthase in atherosclerotic human coronary arteries. Int J Physiol Pathophysiol Pharmacol 2(2):111

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sakurai S, Jojima T, Iijima T, Tomaru T, Usui I, Aso Y (2020) Empagliflozin decreases the plasma concentration of plasminogen activator inhibitor-1 (PAI-1) in patients with type 2 diabetes: association with improvement of fibrinolysis. J Diabetes Complications 34(11):107703

    Article  PubMed  Google Scholar 

  112. valsartan are more effective than ACEIs through attenuation of alternative production of AngII and activation of vasculoprotective AT2R

  113. Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN (2021) Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD. Int J Mol Sci 22(13):6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lévy BI, Mourad JJ (2022) Renin angiotensin blockers and cardiac protection: from basis to clinical trials. Am J Hypertens 35(4):293–302

    Article  PubMed  Google Scholar 

  115. Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, Diao H (2016) Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem Biophys Res Commun 471(1):5–9

    Article  CAS  PubMed  Google Scholar 

  116. Wolak T (2014) Osteopontin–a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 236(2):327–337

    Article  CAS  PubMed  Google Scholar 

  117. Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Deng X, Fan Y, Xiang D, Mehta JL (2015) Lectin-like ox-LDL receptor-1 (LOX-1)–Toll-like receptor 4 (TLR4) interaction and autophagy in CATH a differentiated cells exposed to angiotensin II. Mol Neurobiol 51(2):623–32

    Article  CAS  PubMed  Google Scholar 

  118. Kattoor AJ, Kanuri SH, Mehta JL (2019) Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 26(9):1693–1700

    Article  CAS  PubMed  Google Scholar 

  119. Aoyama T, Minatoguchi S (2011) The effect of ARB on prevention of atherosclerosis. Nihon rinsho Jpn J Clin Med 69(1):92–9

    Google Scholar 

  120. Husain K, Suarez E, Isidro A, Ferder L (2010) Effects of paricalcitol and enalapril on atherosclerotic injury in mouse aortas. Am J Nephrol 32(4):296–304

    Article  CAS  PubMed  Google Scholar 

  121. Da Cunha V, Tham DM, Martin-McNulty B, Deng G, Ho JJ, Wilson DW, Rutledge JC, Vergona R, Sullivan ME, Wang YX (2005) Enalapril attenuates angiotensin II-induced atherosclerosis and vascular inflammation. Atherosclerosis 178(1):9–17

    Article  PubMed  Google Scholar 

  122. Hirohata A, Yamamoto K, Miyoshi T, Hatanaka K, Hirohata S, Yamawaki H, Komatsubara I, Hirose E, Kobayashi Y, Ohkawa K, Ohara M (2012) Four-year clinical outcomes of the OLIVUS-Ex (impact of Olmesartan on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) extension trial. Atherosclerosis 220(1):134–138

    Article  CAS  PubMed  Google Scholar 

  123. Katogiannis K, Ikonomidis I, Stamouli M, Makavos G, Tsilivarakis D, Koliou G, Vythoulkas D, Tsirigotis P (2021) Effect of sacubitril/valsartan on left ventricular longitudinal strain in patients with hematologic malignancies after bone marrow transplantation. Eur Heart J 42(Supplement_1):ehab724-020

    Article  Google Scholar 

  124. Wei S, Sun J, Li Y, Xu K, Wang M, Zhang Y (2022) Losartan attenuates atherosclerosis in uremic mice by regulating Treg/Th17 balance via mediating PTEN/PI3K/Akt pathway. Nephron 17:1–1

    Google Scholar 

  125. Sansoè G, Aragno M, Wong F (2020) Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int 40(1):18–31

    Article  PubMed  Google Scholar 

  126. Anguiano L, Riera M, Pascual J, Soler MJ (2017) Circulating ACE2 in cardiovascular and kidney diseases. Curr Med Chem 24(30):3231–3241

    Article  CAS  PubMed  Google Scholar 

  127. Wang Y, Tikellis C, Thomas MC, Golledge J (2013) Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis 226(1):3–8

    Article  CAS  PubMed  Google Scholar 

  128. Bossi F, Bernardi S, De Nardo D, Bramante A, Candido R, Carretta R, Fischetti F, Fabris B (2016) Angiotensin 1–7 significantly reduces diabetes-induced leukocyte recruitment both in vivo and in vitro. Atherosclerosis 1(244):121–130

    Article  Google Scholar 

  129. AlAnazi FH, Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Ogaly HA, Alanazi YA, Saad HM, Batiha GE (2019) Effects of neprilysin and neprilysin inhibitors on glucose homeostasis: controversial points and a promising arena. J Diabetes. https://doi.org/10.1111/1753-0407.13389

    Article  Google Scholar 

  130. Suematsu Y, Jing W, Nunes A, Kashyap ML, Khazaeli M, Vaziri ND, Moradi H (2018) LCZ696 (sacubitril/valsartan), an angiotensin-receptor neprilysin inhibitor, attenuates cardiac hypertrophy, fibrosis, and vasculopathy in a rat model of chronic kidney disease. J Cardiac Fail 24(4):266–275

    Article  CAS  Google Scholar 

  131. Renna NF, Ramirez JM, Garcia RD, Miatello RM. (2018) Role of Insulin Resistance in Vascular Inflammation. InUltimate Guide to Insulin . IntechOpen

  132. Jordan J, Stinkens R, Jax T, Engeli S, Blaak EE, May M, Havekes B, Schindler C, Albrecht D, Pal P, Heise T (2017) Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther 101(2):254–263

    Article  CAS  PubMed  Google Scholar 

  133. Di Pino A, DeFronzo RA (2019) Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev 40(6):1447–1467

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kurata M, Okura T, Irita J, Enomoto D, Nagao T, Jotoku M, Miyoshi K, Desilva VR, Higaki J (2011) Angiotensin II receptor blockade with valsartan decreases plasma osteopontin levels in patients with essential hypertension. J Hum Hypertens 25(5):334–339

    Article  CAS  PubMed  Google Scholar 

  135. Song C, Hongbing Y, Shujuan C, Shuzheng L, Yundai C, Guoxiang H, Xiantao S, Zening J, Lijun M, CuiSong V (2011) The impact of Valsartan on vascular endothelial cells in plaque with ApoE knockout mice. Heart 97(Suppl 3):A23–A24

    Article  Google Scholar 

  136. Martyniak A, Tomasik PJ (2023) A New perspective on the renin-angiotensin system. Diagnostics 13(1):16

    Article  CAS  Google Scholar 

  137. Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013) Impact of the renin–angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 1(63):98–106

    Article  Google Scholar 

  138. Kusaka H et al (2015) LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am J Hypertens 28:1409–1417

    Article  CAS  PubMed  Google Scholar 

  139. Gupta DK, Daniels LB, Cheng S, deFilippi CR, Criqui MH, Maisel AS, Lima JA, Bahrami H, Greenland P, Cushman M, Tracy R (2017) Differences in natriuretic peptide levels by race/ethnicity (from the multi-ethnic study of atherosclerosis). Am J Cardiol 120(6):1008–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Imanishi T et al (2008) Effects of angiotensin converting enzyme inhibitor and angiotensin II receptor antagonist combination on nitric oxide bioavailability and atherosclerotic change in Watanabe heritable hyperlipidemic rabbits. Hypertens Res 31:575–584

    Article  CAS  PubMed  Google Scholar 

  141. McMurray JJ et al (2014) Angiotensin- neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004

    Article  PubMed  Google Scholar 

  142. Hayashi K, Sasamura H, Azegami T, Itoh H (2012) Regression of atherosclerosis in apolipoprotein E-deficient mice is feasible using high-dose angiotensin receptor blocker, candesartan. J Atheroscler Thromb 19:736–746

    CAS  PubMed  Google Scholar 

  143. Solomon SD et al (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomized controlled trial. Lancet 380:1387–1395

    Article  CAS  PubMed  Google Scholar 

  144. Mogensen UM et al (2017) The effects of sacubitril/valsartan on coronary outcomes in PARADIGM-HF. Am Heart J 188:35–41

    Article  CAS  PubMed  Google Scholar 

  145. Quagliariello V, Buccolo S, Iovine M, Maurea F, Rea D, Barbieri A, Maurea N (2021) 54 Sacubitril–valsartan (LCZ 696) improves longitudinal strain and ejection fraction in preclinical models treated with doxorubicin through NLRP3, MyD88, and pro-fibrotic chemokines. Eur Heart J Suppl 23(Supplement_G):suab130-008

    Article  Google Scholar 

  146. Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S, Iwasaka T (2006) Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res 117(4):385–392

    Article  CAS  PubMed  Google Scholar 

  147. Li QZ, Deng Q, Li JQ, Yi GH, Zhao SP (2005) Valsartan reduces interleukin-1β secretion by peripheral blood mononuclear cells in patients with essential hypertension. Clin Chim Acta 355(1–2):131–136

    Article  CAS  PubMed  Google Scholar 

  148. Yandrapalli S, Aronow WS, Mondal P, Chabbott DR (2017) Limitations of sacubitril/valsartan in the management of heart failure. Am J Ther 24(2):e234–e239

    Article  PubMed  Google Scholar 

  149. Sorrentino A, Steinhorn B, Troncone L (2019) Reversal of heart failure in a chemogenetic model of persistent cardiac redox stress. Am J Physiol Heart Circ Physiol 317:H617–H626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. D’Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M (2017) Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail 19:710–717

    Article  CAS  PubMed  Google Scholar 

  151. Cangiano E, Marchesini J, Campo G, Francolini G, Fortini C, Carrà G, Miccoli M, Ceconi C, Tavazzi L, Ferrari R (2011) ACE inhibition modulates endothelial apoptosis and renewal via endothelial progenitor cells in patients with acute coronary syndromes. Am J Cardiovasc Drugs 11:189–198

    Article  CAS  PubMed  Google Scholar 

  152. Wang ZC, Qi J, Liu LM, Li J, Xu HY, Liang B, Li B (2017) Valsartan reduces AT1-AA-induced apoptosis through suppression oxidative stress mediated ER stress in endothelial progenitor cells. Eur Rev Med Pharmacol Sci 21(5):1159–1168

    PubMed  Google Scholar 

  153. Madan N, Lee AK, Matsushita K, Hoogeveen RC, Ballantyne CM, Selvin E, McEvoy JW (2019) Relation of isolated systolic hypertension and pulse pressure to high-sensitivity cardiac troponin-T and N-terminal pro-B-type natriuretic peptide in older adults (from the atherosclerosis risk in communities study). Am J Cardiol 124(2):245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu J, Lin Q, Guo D, Yang Y, Zhang X, Tu J, Ning X, Song Y, Wang J (2020) Association between pulse pressure and carotid intima-media thickness among low-income adults aged 45 years and older: a population-based cross-sectional study in rural China. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2020.547365

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zheng L, Xia B, Zhang X, Zhao Y (2021) A meta-analysis on the effect and safety of LCZ696 in the treatment of hypertension. Cardiol Res Pract. https://doi.org/10.1155/2021/8867578

    Article  PubMed  PubMed Central  Google Scholar 

  156. Alsaidan AA, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Alsayed KA, Saad HM, Batiha GE (2023) The potential role of SARS-CoV-2 infection in acute coronary syndrome and type 2 myocardial infarction (T2MI): Intertwining spread. Immun Inflamm Dis 11(3):e798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE (2023) The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 9:1–2

    Google Scholar 

  158. Sami OM, Shams HA, Aziz HM, Al-kuraishy HM (2022) The Substantial effects of statins therapy on PCSK9 and adipocytokine in dyslipidemic non-diabetic patients: prevailing motive. HIV Nursing 22(2):1434–1439

    Google Scholar 

  159. Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Al-Hamash SM, De Waard M, Sabatier JM, Saad HM, El-Saber BG (2022) Montelukast and acute coronary syndrome: the endowed drug. Pharmaceuticals 15(9):1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Alkhayyat SS, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GE, Simal-Gandara J (2022) Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res 8:1–9

    Google Scholar 

  161. Al-Kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GE (2022) Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 30(5):1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Batiha GE, Al-Gareeb AI, Rotimi D, Adeyemi OS, Al-Kuraishy HM (2022) Common NLRP3 inflammasome inhibitors and Covid-19: Divide and Conquer. Scientific African 22:e01407

    Article  Google Scholar 

  163. Alrouji M, Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Jabir MS, Saad HM, Batiha GE (2023) NF-κB/NLRP3 inflammasome axis and risk of Parkinson’s disease in Type 2 diabetes mellitus: a narrative review and new perspective. J Cell Mol Med 27(13):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Batiha GE, Al-Gareeb AI, Elekhnawy E, Al-Kuraishy HM (2022) Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology 30(6):1993–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE (2022) COVID-19 and L-arginine supplementations: yet to find the missed key. Curr Protein Pept Sci 23(3):166–169

    Article  CAS  PubMed  Google Scholar 

  166. Al-Kuraishy HM, Al-Gareeb AI, Fageyinbo MS, Batiha GE (2022) Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Sci OA 8(5):FSO797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Negm WA (2023) Potential role of tirzepatide towards Covid-19 infection in diabetic patients: a perspective approach. Inflammopharmacology 19:1–1

    Article  Google Scholar 

  168. Babalghith AO, Al-Kuraishy HM, Al-Gareeb AI, De Waard M, Al-Hamash SM, Jean-Marc S, Negm WA, Batiha GE (2022) The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 30(6):2003–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Alorabi M, Cavalu S, Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Negm WA, Youssef A, El-Kadem AH, Saad HM, Batiha GE (2022) Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother 1(152):113225

    Article  Google Scholar 

  170. Rasheed HA, Al-Naimi MS, Hussien NR, Al-Harchan NA, Al-Kuraishy HM, Al-Gareeb AI (2020) New insight into the effect of lycopene on the oxidative stress in acute kidney injury. Int J Crit Illn Inj Sci 10(Suppl 1):11

    PubMed  PubMed Central  Google Scholar 

  171. Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS (2019) Vinpocetine improves oxidative stress and pro-inflammatory mediators in acute kidney injury. Int J Prev Med 10(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  172. Abdul-Hadi MH, Naji MT, Shams HA, Sami OM, Al-Harchan NA, Al-Kuraishy HM, Al-Gareeb AI (2020) Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: the potential role of metformin and sitagliptin. Biomed Biotechnol Res J (BBRJ) 4(2):166

    Google Scholar 

  173. Al-Kuraishy HM, Al-Gareeb AI, Alzahrani KJ, Cruz-Martins N, Batiha GE (2021) The potential role of neopterin in Covid-19: a new perspective. Mol Cell Biochem 476:4161–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kadhim SS, Al-Windy SA, Al-Kuraishy HM, Al-Gareeb AI (2019) Endothelin-1 is a surrogate biomarker link severe periodontitis and endothelial dysfunction in hypertensive patients: the potential nexus. J Int Oral Health 11(6):369

    Article  Google Scholar 

  175. Al-kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Batiha GE (2022) Ginkgo biloba in the management of the COVID-19 severity. Arch Pharm 355(10):2200188

    Article  CAS  Google Scholar 

  176. Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GE (2022) An insight into the placental growth factor (PlGf)/angii axis in Covid-19: a detrimental intersection. Biotechnol Genet Eng Rev 15:1–20

    Google Scholar 

  177. Al-Kuraishy HM, Batiha GE, Faidah H, Al-Gareeb AI, Saad HM, Simal-Gandara J (2022) Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology 31:1

    PubMed  PubMed Central  Google Scholar 

  178. Saad HM, Tourky GF, Al-Kuraishy HM, Al-Gareeb AI, Khattab AM, Elmasry SA, Alsayegh AA, Hakami ZH, Alsulimani A, Sabatier JM, Eid MW (2022) The potential role of MUC16 (CA125) biomarker in lung cancer: a magic biomarker but with adversity. Diagnostics 12(12):2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Batiha GE, Al-Kuraishy HM, Al-Maiahy TJ, Al-Buhadily AK, Saad HM, Al-Gareeb AI, Simal-Gandara J (2022) Plasminogen activator inhibitor 1 and gestational diabetes: the causal relationship. Diabetol Metab Syndr 14(1):1–6

    Article  Google Scholar 

  180. Al-Kuraishy HM, Al-Gareeb AI, Al-Harcan NA, Alexiou A, Batiha GE (2023) Tranexamic acid and plasminogen/plasmin glaring paradox in COVID-19. Endocr Metab Immune Disord Drug Targets 23(1):35–45

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis, and writing the first draft was performed by all authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Engy Elekhnawy or Gaber El-Saber Batiha.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-kuraishy, H.M., Al-Gareeb, A.I., Elekhnawy, E. et al. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04816-x

Keywords

Navigation