Skip to main content

Advertisement

Log in

Hypoxic regulation of ADAMTS-2 and -3 (a disintegrin and matrix metalloproteinase with thrombospondin motifs 2 and 3) procollagen N proteinases by HIF-1α in endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

ADAMTS-2 and ADAMTS-3, known as procollagen amino proteases (PNP), are primarily responsible for processing the amino ends of the fibrillar collagen precursors. ADAMTS-2 is a highly expressed gene in type I collagen-rich tissues, such as skin, bones, tendons, and aorta. ADAMTS-3 is mainly expressed in cartilage, where it colocalizes with type II procollagen and in the nervous system. Studies about ADAMTS-2 and ADAMTS-3 enzymes primarily focused on their collagen processing activity. Knowledge about the transcriptional regulations of these genes is rather limited. Here we analyzed the transcriptional regulations of ADAMTS-2 and ADAMTS-3 genes under chemically induced hypoxic conditions in endothelial cell model, HUVECs. We elucidated that hypoxia is the potent positive regulator of ADAMTS-2 and ADAMTS-3 genes. qRT-PCR and western blotting studies revealed that ADAMTS-2 and ADAMTS-3 expressions were increased at mRNA and protein levels under chemically induced hypoxic conditions in HUVECs. In addition, Transient transfection experiments of ADAMTS-2 and ADAMTS-3 promoter–reporter constructs indicated that low oxygen conditions increased ADAMTS-2 and ADAMTS-3 promoter activities. Furthermore, the DNA–protein interaction assay provided evidence of the functional binding of HIF-1α on bioinformatically determined HRE regions on the ADAMTS-2 and ADAMTS-3 promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14:430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  3. van Kempen LC, Ruiter DJ, van Muijen GN, Coussens LM (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. Eur J Cell Biol 82:539–548

    Article  PubMed  Google Scholar 

  4. Clarijs R, Ruiter DJ, de Waal RM (2003) Pathophysiological implications of stroma pattern formation in uveal melanoma. J Cell Physiol 194:267–271

    Article  CAS  PubMed  Google Scholar 

  5. Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, Shen H (2018) Role of hypoxia-induced exosomes in tumor biology. Mol Cancer 17:1–8

    Article  Google Scholar 

  6. Huang Y, Lin D, Taniguchi CM (2017) Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci China Life Sci 60:1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McKeown S (2014) Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br J Radiol 87:20130676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fraley SI, Feng Y, Krishnamurthy R, Kim D-H, Celedon A, Longmore GD, Wirtz D (2010) A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat Cell Biol 12:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cox TR, Bird D, Baker A-M, Barker HE, Ho MW, Lang G, Erler JT (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Can Res 73:1721–1732

    Article  CAS  Google Scholar 

  11. Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sørlie T, Dai H, He YD, van Veer LJ, Bartelink H (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102:3738–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, Chi J-T, Van De Rijn M, Botstein D, Brown PO (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:e7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cawston TE, Young DA (2010) Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res 339:221

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Huang J, Yang Z (2015) The roles of ADAMTS in angiogenesis and cancer. Tumour Biol 36:4039–4051. https://doi.org/10.1007/s13277-015-3461-8

    Article  CAS  PubMed  Google Scholar 

  16. Li S-W, Arita M, Fertala A, Bao Y, Gc K, Tk L, Mm H, Dj HHAP (2001) Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem J 355:271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colige A, Sieron AL, Li S-W, Schwarze U, Petty E, Wertelecki W, Wilcox W, Krakow D, Cohn DH, Reardon W (1999) Human ehlers-danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Human Genet 65:308–317

    Article  CAS  Google Scholar 

  18. Alper M, Kockar F (2014) IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway. Mol Cell Biochem 393:165–175

    Article  CAS  PubMed  Google Scholar 

  19. Aydemir AT, Alper M, Kockar F (2018) SP1-mediated downregulation of ADAMTS3 gene expression in osteosarcoma models. Gene 659:1–10. https://doi.org/10.1016/j.gene.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  20. Turkoglu SA, Kockar F (2016) SP1 and USF differentially regulate ADAMTS1 gene expression under normoxic and hypoxic conditions in hepatoma cells. Gene 575:48–57. https://doi.org/10.1016/j.gene.2015.08.035

    Article  CAS  PubMed  Google Scholar 

  21. Tokay E, Sagkan RI, Kockar F (2020) TNF-alpha induces URG-4/URGCP gene expression in hepatoma cells through starvation dependent manner. Biochem Genet. https://doi.org/10.1007/s10528-020-09972-z

    Article  PubMed  Google Scholar 

  22. Alper M, Köçkar F (2012) Effects of fibroblast growth factor (FGF acidic) and epidermal growth factor (EGF) on procollagen-N proteinases; ADAMTS-2 and ADAMTS-3 in osteosarcoma model

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  24. Hacıoğlu N, Güngör T, Tokay E, Önder FC, Ay M, Köçkar F (2020) Synthesis and biological evaluation of 2,4,6-trinitroaniline derivatives as potent antitumor agents. Monatshefte für Chemie-Chem Mon 151:1629–1641

    Article  Google Scholar 

  25. Yıldırım H, Karaman M, Köçkar F (2017) The role of hypoxia response element in TGF beta-induced carbonic anhydrase IX expression in Hep3B human hepatoma cells. Arch Biol Sci 69(4):593–601

    Article  Google Scholar 

  26. Okuyan D, Turkoglu SA, Kockar F (2020) Carbonic anhydrase III is a new target of HIF1α in prostate cancer model. Gene 762:145034

    Article  CAS  PubMed  Google Scholar 

  27. Tokay E, Kockar F (2016) SP1 is a transcriptional regulator of URG-4/URGCP gene in hepatocytes. Mol Cell Biochem 423:75–83

    Article  CAS  PubMed  Google Scholar 

  28. Alper M, Aydemir AT, Köçkar F (2015) Induction of human ADAMTS-2 gene expression by IL-1α is mediated by a multiple crosstalk of MEK/JNK and PI3K pathways in osteoblast like cells. Gene 573:321–327

    Article  CAS  PubMed  Google Scholar 

  29. Hatipoglu OF, Hirohata S, Cilek MZ, Ogawa H, Miyoshi T, Obika M, Demircan K, Shinohata R, Kusachi S, Ninomiya Y (2009) ADAMTS1 is a unique hypoxic early response gene expressed by endothelial cells. J Biol Chem 284:16325–16333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirohata S, Hatipoglu FO, Miyoshi T, Ogawa H, Obika M, Kamikawa S, Kusachi S, Itoh H, Ninomiya Y (2009) ADAMTS-1 is an endothelial cell-specific hypoxia-inducible gene. Am Heart Assoc 120:S1172

    Google Scholar 

  31. Kumar S, Rao N, Ge R (2012) Emerging roles of ADAMTSs in angiogenesis and cancer. Cancers 4:1252–1299. https://doi.org/10.3390/cancers4041252

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tortorella MD, Malfait F, Barve RA, Shieh HS, Malfait AM (2009) A review of the ADAMTS family, pharmaceutical targets of the future. Curr Pharm Des 15:2359–2374. https://doi.org/10.2174/138161209788682433

    Article  CAS  PubMed  Google Scholar 

  33. Dubail J, Kesteloot F, Deroanne C, Motte P, Lambert V, Rakic J-M, Lapiere C, Nusgens B, Colige A (2010) ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity. Cell Mol Life Sci 67:4213–4232

    Article  CAS  PubMed  Google Scholar 

  34. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen V-M, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3–mediated vascular endothelial growth factor-C activation. Circulation 129:1962–1971

    Article  CAS  PubMed  Google Scholar 

  35. Sun Z, Liu Y, Liang H, Li Y, Wang D, Tian J (2018) Interleukin-1β exacerbates the catabolic effects of human nucleus pulposus cells through activation of the nuclear factor kappa B signaling pathway under hypoxic conditions. Eur Rev Med Pharmacol Sci 22:7129–7139

    PubMed  Google Scholar 

  36. Michiels C, Arnould T, Remacle J (2000) Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 1497:1–10. https://doi.org/10.1016/s0167-4889(00)00041-0

    Article  CAS  PubMed  Google Scholar 

  37. Shan Y, You B, Shi S, Shi W, Zhang Z, Zhang Q, Gu M, Chen J, Bao L, Liu D, You Y (2018) Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases. Cell Death Dis 9:382. https://doi.org/10.1038/s41419-018-0425-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49:1–15. https://doi.org/10.3109/10409238.2013.838205

    Article  CAS  PubMed  Google Scholar 

  39. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–e217. https://doi.org/10.1182/blood-2010-10-314427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schodel J, Mole DR, Ratcliffe PJ (2013) Pan-genomic binding of hypoxia-inducible transcription factors. Biol Chem 394:507–517. https://doi.org/10.1515/hsz-2012-0351

    Article  CAS  PubMed  Google Scholar 

  41. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775. https://doi.org/10.1074/jbc.M901790200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xia X, Kung AL (2009) Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol 10:R113. https://doi.org/10.1186/gb-2009-10-10-r113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Villar D, Ortiz-Barahona A, Gomez-Maldonado L, Pescador N, Sanchez-Cabo F, Hackl H, Rodriguez BA, Trajanoski Z, Dopazo A, Huang TH, Yan PS, Del Peso L (2012) Cooperativity of stress-responsive transcription factors in core hypoxia-inducible factor binding regions. PLoS ONE 7:e45708. https://doi.org/10.1371/journal.pone.0045708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Saos-2, MG-63, and HUVEC cells were from ATCC. Laboratories at Balıkesir University, Molecular Biology and Genetics Department were used for the experiments

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by CA, MA, and FK. The first draft of the manuscript was written by CA, MA, and FK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feray Köçkar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical approval

The article contains no research in which animals were used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2135 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntaş, C., Alper, M., Keleş, Y. et al. Hypoxic regulation of ADAMTS-2 and -3 (a disintegrin and matrix metalloproteinase with thrombospondin motifs 2 and 3) procollagen N proteinases by HIF-1α in endothelial cells. Mol Cell Biochem 478, 1151–1160 (2023). https://doi.org/10.1007/s11010-022-04549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04549-3

Keywords

Navigation